Foundations of the theory of probability

(Jeff_L) #1
§


  1. ConditionalMathematicalExpectations 55


isthenecessary

conditionfortheexistenceofE(y) (seeChap.IV,

§

1). Fromthis

convergenceitfollowsthattheseries
(10)

con-

vergesalmostcertainly (seeChap.

IV,
§2,V).

Wecanfurther

show,exactlyasinthetheoryofthe

Lebesgueintegral,thatfrom

theconvergenceof (10) forsomeA,itsconvergenceforeveryA

follows,andthatinthecasewhereseries(10)converges,
S


x

M

tendstoadefinitelimitasA


3

. Wecanthendefine


E

u(y)

=limS
;».

(U)

ToprovethattheconditionalexpectationE
u(v)


definedbyrela-

tion
(11)


satisfiestherequirementssetforthabove,weneedonly

convince ourselvesthat E
M(y),


asdeterminedby
(11),

satisfies

equation
(1).


Weprovethisfactthus:

E{ueA}Eu(y)

=hmE
{Mc^
}

S;.(w)

=lim

2

kXp
{u<=A}{k*

^y<(k+l)X}=E

{ucA}(y)

.

'/.
->
k

——oo

Theinterchangeofthemathematicalexpectationsignwiththe

limitsign is admissibleinthis computation,since S

x

(u) con-

vergesuniformlytoE

M

(y)

asA


(asimpleresultofProperty
V

of mathematical expectation in
§2).


The interchange
of the

mathematical expectationsign
and


the
summation sign is also

admissiblesincetheseries

=

^{u,A}{\kX\

?

u

[kl

^y

<

(k
+1)A]}

k=

—oo

=

ZW

?{uC

A}[kl

^y<(k

+

\)X\

converges (animmediateresultofPropertyVofmathematical

expectation)

.

Insteadof (11) wemaywrite

E.(y)=/yP.
(<*£). (12)

E

Wemust
notforgethere,however,that
(12)

isnotanintegral

3

In
thiscaseweconsideronlyacountablesequenceofvaluesofA;then

all
probabilities

P

u

{kl<Zy<(k
+

i)X\ arealmostcertainlydefinedforall

thesevaluesofA.
Free download pdf