Foundations of the theory of probability

(Jeff_L) #1

56 V. ConditionalProbabilitiesandMathematicalExpectations


inthesenseof
§1,

Chap. IV, so that
(12)

is onlya
symbolic

expression.


If
x

is
a

randomvariablethenwecallthe
functionofxanda

Ff(a)

=P

s

(y<a)

theconditionaldistributionfunction
ofy


forknownx.

F
x

{y)

(a) isalmostcertainlydefinedforeverya.Ifa
<

bthen

almostcertainly


Ff(a)^Ff(b).

From (11) and (10) itfollows

4

thatalmostcertainly

E

x(y)

=
lim

k=%

£kX[Ff{{k
+

\)l)


  • Ff(kl)]
    . (13)


;.

-+
ok=


  • oo


Thisfactcanbeexpressedsymbolicallybytheformula

+ 00

E

x(y)

=

fadFf(a)

(14)


oo

Bymeansofthenewdefinitionofmathematicalexpectation
[(10)

and
(11)]

itiseasytoprovethat,forarealfunctionofu,

E«[/My]=/(«)E

M(y)

.

(15)

Cf.footnote3.
Free download pdf