62
VI. Independence;TheLawofLargeNumbers
Ifs
n
-E(s
n
) are
uniformly
bounded:
\s
n
-E(s
n)
\^M,
thenfromtheinequality
(9)
in
§
3, Chap.IV,
P{|s„-E(Sn
)|^}fe^-\
Therefore,inthiscasetheMarkovcondition
(3)
isalsonecessary
forthestabilityofthes
n
.
If
_
x
x
+
x
2
H
j-x
n
Sn
~
n
andthevariablesx
n
areuncorrelatedinpairs,wehave
<*
=
i*{<y
2
(xi)
+
*
2
(*
2 )+
•••
+
**(*»)}•
Therefore, inthiscase,thefollowing conditionis sufficient
for
thenormalstabilityofthearithmeticalmeans s
n
:
°l
=
o*
(
Xl)
+tf(x
2 )
+
.
+
a*
(*J
=
(»*) (4)
(Theorem
of
Tchebycheff). Inparticular, condition
(4)
isful-
filledifallvariablesx„areuniformlybounded.
Thistheoremcanbegeneralizedforthecaseofweaklycor-
relatedvariables
x
n
.
Ifwe
assume
thatthecoefficientofcorrela-
tionr
mn
a
ofx
m
andx„
satisfies
theinequality
r
mn
^c(\n-m\)
andthat
c.=
2>(*).
jfc=
then
a
sufficientconditionfornormalstabilityofthearithmetic
meanssis
2
C„oi-o(HP).
(5)
Inthecaseofindependentsummandsx
n
wecanstateaneces-
saryand sufficientconditionfor the stabilityofthearithmetic
meanss
n
.Foreveryx
n
thereexistsaconstantm
n
(themedianof
x
n
)
whichsatisfiesthefollowingconditions:
P(*n<**n)
^i>
1
Itisobviousthatr
mn
=
1
always.
2
Cf.A.Khintchine,SwrZaloiforkdes
grandesnombres.C.R.del'acad.
sci.Parisv.186,1928,p.285.