§3.TheLawofLargeNumbers 61wherethex
lf
x
2 ,...
,x
nareuncorrelatedinpairs,wecaneasilycomputethat
o2(s)=o2(*,)+o*(x2)+- ••
+o2(*»). (?)
Inparticular,equation(7)holdsfortheindependentvariablesx
k.§- TheLawofLargeNumbers
Randomvariablessofasequence§lj&2,- ••
,
O
n,...arecalledstable,ifthereexistsanumericalsequence
(Zi,ct
2 ,..
.,ct
n>.••suchthatforanypositivee
P{\sn-dn\^e}convergestozeroasn
—*
oo.IfallE(s
n)existandifwemaysetdn=E(s„),thenthestabilityisnormal.
Ifall
s
nareuniformly
bounded,thenfromP{\sn-dn\^e}-+0»++oo(1)weobtaintherelation
|E(s„)-dn\-> «->+ooand therefore
P{|sn-E(sri)|^£}->0.
«->+oo (2)Thestabilityofaboundedstablesequenceisthusnecessarilynormal.LetE(sn~E(sn))^=aHs
n)=^.AccordingtotheTchebychefF inequality,
P{|sn-E(S„)|^£}^^.Therefore,theMarkov Condition<4->0 n^+oo(3)issufficientfornormal stability.