Foundations of the theory of probability

(Jeff_L) #1
§

3.TheLawofLargeNumbers 61

wherethex
lf


x
2 ,

...
,

x
n

areuncorrelatedinpairs,wecaneasily

computethat


o

2

(s)=o

2

(*,)

+

o*(x

2

)+


  • ••


+

o

2

(*»)

. (?)


Inparticular,equation(7)holdsfortheindependentvariablesx
k

.

§


  1. TheLawofLargeNumbers


Randomvariablessofasequence

§lj

&2,


  • ••
    ,


O
n,

...

arecalledstable,ifthereexistsanumericalsequence


(Zi,ct
2 ,

..
.

,ct
n

>.••

suchthatforanypositivee


P{\s

n

-d

n

\^e}

convergestozeroasn


—*
oo.IfallE(s
n)

existandifwemayset

d

n

=E(s„),

thenthestabilityisnormal.


Ifall
s
n

are

uniformly
bounded,thenfrom

P{\s

n

-d

n

\^e}-+0

»++oo

(1)

weobtaintherelation


|E(s„)-d

n\

-> «->+oo

and therefore


P{|s

n

-E(s

ri)|^

£}->0.
«->+oo (2)

Thestabilityofaboundedstablesequenceisthusnecessarily

normal.

Let

E(s

n

~E(s

n

))^

=

aHs
n

)

=

^.

AccordingtotheTchebychefF inequality,


P{|s

n

-E(

S

„)|^

£

}^^.

Therefore,theMarkov Condition

<4->0 n^+oo

(3)

issufficientfornormal stability.
Free download pdf