§
3.TheLawofLargeNumbers 61
wherethex
lf
x
2 ,
...
,
x
n
areuncorrelatedinpairs,wecaneasily
computethat
o
2
(s)=o
2
(*,)
+
o*(x
2
)+
- ••
+
o
2
(*»)
. (?)
Inparticular,equation(7)holdsfortheindependentvariablesx
k
.
§
- TheLawofLargeNumbers
Randomvariablessofasequence
§lj
&2,
- ••
,
O
n,
...
arecalledstable,ifthereexistsanumericalsequence
(Zi,ct
2 ,
..
.
,ct
n
>.••
suchthatforanypositivee
P{\s
n
-d
n
\^e}
convergestozeroasn
—*
oo.IfallE(s
n)
existandifwemayset
d
n
=E(s„),
thenthestabilityisnormal.
Ifall
s
n
are
uniformly
bounded,thenfrom
P{\s
n
-d
n
\^e}-+0
»++oo
(1)
weobtaintherelation
|E(s„)-d
n\
-> «->+oo
and therefore
P{|s
n
-E(s
ri)|^
£}->0.
«->+oo (2)
Thestabilityofaboundedstablesequenceisthusnecessarily
normal.
Let
E(s
n
~E(s
n
))^
=
aHs
n
)
=
^.
AccordingtotheTchebychefF inequality,
P{|s
n
-E(
S
„)|^
£
}^^.
Therefore,theMarkov Condition
<4->0 n^+oo
(3)
issufficientfornormal stability.