§3.TheLaw
ofLargeNumbers 63We
setXnl;=%kifI^fc-mfc
|^n,Xnk~~otherwise,c*_Xn
+*„*+•••+*„«jrelationsk=nZP{|**-*=1mk\k=nI=n2p(*•»
+**)-*=i+oo
(6)oM^)=J>2(*n*)=<>(*2)(7)arenecessaryandsufficientforthestabilityof
variablessn3.Wemayhereassumetheconstantsd
ntobeequaltotheE(s„*)sothatinthecasewhereE(s*)-E(sn)-»0 w->+cx)(andonlyinthiscase) thestabilityisnormal.AfurthergeneralizationofTchebycheff'stheoremisobtainedifweassumethatthes
ndependinsomewayupontheresultsofanyntrials,
«i,%,- ••
,%n
.sothataftereachdefinite
outcomeofall
thesentrials
s
nassumesadefinitevalue.Thegeneralideaofallthesetheorems knownasthelaw
oflargenumbers,consistsinthefact thatifthedepend-enceofvariabless
nuponeachseparatetrial
%k(k=1,2,...,n)isverysmallforalargen,thenthevariabless
narestable.Ifweregard$ik=
E[EH1a
t...9u(Sn)—E«,9l«...«*-i(S
n)]2asareasonable
measureofthe dependenceof
variabless
nuponthetrial
E
fc,thentheabove-mentionedgeneralideaofthelawoflargenumbers
canbemadeconcretebythefollowingconsidera-tions4.*n*=E«,«,...21*(sn)~
E^
9t
2...
2U-_
i(s«)•3Cf. A.
KoLMOGOROy. tlberdieSummen
durchdenZufall bestimmterunabhangiger
Grossen,Math.Ann.v.
99,1928,
pp.309-319(corrections
andnotestothisstudy,v.
102,1929
pp.484-488,TheoremVIIIanda
supplementonp. 318).4Cf.A.
KolmogoroY- Surlaloidesgrandesnombres.Rend.Accad.Linceiv.
9,1929
pp.470-474.