Foundations of the theory of probability

(Jeff_L) #1
§

3.The

Law
of

LargeNumbers 63

We


set

Xnl;=%k

if

I

^fc-mfc
|

^

n,

Xnk

~~

otherwise,

c*

_

Xn
+*„*+

•••

+*„

«

jrelations

k=n

ZP{|**-

*=1

m

k\

k=n

I=n

2

p

(*•»
+

**)

-*

=i

+

oo
(6)

oM^)=J>

2

(*n*)

=<>(*

2

)

(7)

arenecessaryandsufficientforthestabilityof


variabless

n

3

.

Wemayhereassumetheconstantsd
n

tobeequaltotheE(s„*)

so

thatinthecasewhere

E(s*)-E(s

n

)-»0 w->+cx)

(andonlyinthiscase) thestabilityisnormal.

AfurthergeneralizationofTchebycheff'stheoremisobtained

ifweassumethatthes
n

dependinsomewayupontheresultsof

anyntrials,


«i,%,


  • ••
    ,%n


.

sothataftereach

definite
outcome

ofall
thesen

trials
s
n

assumes

adefinitevalue.Thegeneralideaofallthesetheorems knownas

thelaw
of

largenumbers,consistsinthefact thatifthedepend-

enceofvariabless
n

uponeachseparatetrial
%k

(k

=

1,2,

..

.

,n)

isverysmallforalargen,thenthevariabless
n

arestable.Ifwe

regard

$ik

=
E[EH

1

a
t

...9u(Sn)

—E

«,9l«...«*-i(

S
n)]

2

asareasonable
measureofthe dependence

of
variabless
n

upon

thetrial
E
fc

,thentheabove-mentionedgeneralideaofthelawof

largenumbers
canbemadeconcretebythefollowingconsidera-

tions

4

.

*n*

=E«,

«,...21*(

s

n)

~
E^
9t
2

...
2U-

_
i

(s«)•

3

Cf. A.
KoLMOGOROy. tlberdieSummen
durchdenZufall bestimmter

unabhangiger
Grossen,Math.Ann.v.
99,1928,
pp.

309-319(corrections
and

notestothisstudy,v.
102,

1929
pp.484-488,TheoremVIIIanda
supplement

onp. 318).

4

Cf.A.
KolmogoroY- Surlaloidesgrandesnombres.Rend.

Accad.Lincei

v.
9,

1929
pp.470-474.
Free download pdf