§
3.The
Law
of
LargeNumbers 63
We
set
Xnl;=%k
if
I
^fc-mfc
|
^
n,
Xnk
~~
otherwise,
c*
_
Xn
+*„*+
•••
+*„
«
jrelations
k=n
ZP{|**-
*=1
m
k\
k=n
I=n
2
p
(*•»
+
**)
-*
=i
+
oo
(6)
oM^)=J>
2
(*n*)
=<>(*
2
)
(7)
arenecessaryandsufficientforthestabilityof
variabless
n
3
.
Wemayhereassumetheconstantsd
n
tobeequaltotheE(s„*)
so
thatinthecasewhere
E(s*)-E(s
n
)-»0 w->+cx)
(andonlyinthiscase) thestabilityisnormal.
AfurthergeneralizationofTchebycheff'stheoremisobtained
ifweassumethatthes
n
dependinsomewayupontheresultsof
anyntrials,
«i,%,
- ••
,%n
.
sothataftereach
definite
outcome
ofall
thesen
trials
s
n
assumes
adefinitevalue.Thegeneralideaofallthesetheorems knownas
thelaw
of
largenumbers,consistsinthefact thatifthedepend-
enceofvariabless
n
uponeachseparatetrial
%k
(k
=
1,2,
..
.
,n)
isverysmallforalargen,thenthevariabless
n
arestable.Ifwe
regard
$ik
=
E[EH
1
a
t
...9u(Sn)
—E
«,9l«...«*-i(
S
n)]
2
asareasonable
measureofthe dependence
of
variabless
n
upon
thetrial
E
fc
,thentheabove-mentionedgeneralideaofthelawof
largenumbers
canbemadeconcretebythefollowingconsidera-
tions
4
.
*n*
=E«,
«,...21*(
s
n)
~
E^
9t
2
...
2U-
_
i
(s«)•
3
Cf. A.
KoLMOGOROy. tlberdieSummen
durchdenZufall bestimmter
unabhangiger
Grossen,Math.Ann.v.
99,1928,
pp.
309-319(corrections
and
notestothisstudy,v.
102,
1929
pp.484-488,TheoremVIIIanda
supplement
onp. 318).
4
Cf.A.
KolmogoroY- Surlaloidesgrandesnombres.Rend.
Accad.Lincei
v.
9,
1929
pp.470-474.