Foundations of the theory of probability

(Jeff_L) #1

62


VI. Independence;TheLawofLargeNumbers

Ifs
n

-E(s
n

) are

uniformly
bounded:

\s
n

-E(s
n)

\^M,

thenfromtheinequality
(9)


in
§

3, Chap.IV,

P{|s„-E(Sn
)|^}fe^-\

Therefore,inthiscasetheMarkovcondition
(3)

isalsonecessary

forthestabilityofthes
n

.

If

_

x

x

+

x

2

H

j-x

n

Sn

~

n

andthevariablesx
n


areuncorrelatedinpairs,wehave

<*

=

i*{<y

2

(xi)
+

*

2

(*
2 )+

•••

+

**(*»)}•

Therefore, inthiscase,thefollowing conditionis sufficient
for

thenormalstabilityofthearithmeticalmeans s
n

:

°l

=
o*

(

Xl)

+tf(x

2 )

+









.
+

a*

(*J

=

(»*) (4)

(Theorem
of

Tchebycheff). Inparticular, condition
(4)

isful-

filledifallvariablesx„areuniformlybounded.

Thistheoremcanbegeneralizedforthecaseofweaklycor-

relatedvariables
x
n

.

Ifwe
assume

thatthecoefficientofcorrela-

tionr

mn

a

ofx
m

andx„

satisfies
theinequality

r

mn

^c(\n-m\)

andthat

c.=
2>(*).

jfc=

then
a

sufficientconditionfornormalstabilityofthearithmetic

meanssis

2

C„oi-o(HP).

(5)

Inthecaseofindependentsummandsx
n

wecanstateaneces-

saryand sufficientconditionfor the stabilityofthearithmetic

meanss
n

.Foreveryx
n

thereexistsaconstantm
n

(themedianof

x
n

)

whichsatisfiesthefollowingconditions:

P(*n<**n)
^i>

1

Itisobviousthatr

mn

=
1

always.

2

Cf.A.Khintchine,SwrZaloiforkdes

grandesnombres.C.R.del'acad.

sci.Parisv.186,1928,p.285.
Free download pdf