62
VI. Independence;TheLawofLargeNumbersIfs
n-E(s
n) areuniformly
bounded:\s
n-E(s
n)\^M,thenfromtheinequality
(9)
in
§3, Chap.IV,P{|s„-E(Sn
)|^}fe^-\Therefore,inthiscasetheMarkovcondition
(3)isalsonecessaryforthestabilityofthes
n.If_xx+x2Hj-xnSn~nandthevariablesx
n
areuncorrelatedinpairs,wehave<*=i*{<y2(xi)
+*2(*
2 )+•••+**(*»)}•Therefore, inthiscase,thefollowing conditionis sufficient
forthenormalstabilityofthearithmeticalmeans s
n:°l=
o*(Xl)+tf(x2 )+.
+a*(*J=(»*) (4)(Theorem
ofTchebycheff). Inparticular, condition
(4)isful-filledifallvariablesx„areuniformlybounded.Thistheoremcanbegeneralizedforthecaseofweaklycor-relatedvariables
x
n.Ifwe
assumethatthecoefficientofcorrela-tionrmnaofx
mandx„satisfies
theinequalityrmn^c(\n-m\)andthatc.=
2>(*).jfc=then
asufficientconditionfornormalstabilityofthearithmeticmeanssis2C„oi-o(HP).(5)Inthecaseofindependentsummandsx
nwecanstateaneces-saryand sufficientconditionfor the stabilityofthearithmeticmeanss
n.Foreveryx
nthereexistsaconstantm
n(themedianofx
n)whichsatisfiesthefollowingconditions:P(*n<**n)
^i>1Itisobviousthatrmn=
1always.2Cf.A.Khintchine,SwrZaloiforkdesgrandesnombres.C.R.del'acad.sci.Parisv.186,1928,p.285.