Foundations of the theory of probability

(Jeff_L) #1

64 VI. Independence;TheLawofLargeNumbers


Then


s

n


E(s„)=z

x

+

z

2

+






      • 4-
        z
        n,






E{z

nk)

=EE

3ll

9(
8

...
9lifc

(s
n)


EE
?
il9Il...9iJt

_
1

(s

n

)

=
E(s

n

)


  • E(s


n

)

=

0.

aM^t)

=
E(4,)

=
^..

Wecaneasilycompute alsothattherandomvariablesz
nk


(k


1,2,


...
,

n) areuncorrelated.Forleti
<

k
;

then

5

E^

x9l 8

...
2U_i{

z
ni

z
nk)

=
*n»

E^i,

$(,

....«*_
i(

2

nit)

=

^nttE^M....3lt_
x

(s„)—E

9tl9i
t

...8ifc_ 1

(s

w)]

=

andtherefore


E(z
ni

z
nk)

=
0.

Wethushave


2

(S
H)

=0*(Z

ni)

+

0*(
Zn2
)

+


  • ••

    • O^n)




=

ft,

+
#

2

+


  • ••

    • fin








Therefore,thecondition


issufficientforthenormalstabilityofthe


variables
s
n

.

§


  1. NotesontheConceptofMathematicalExpectation


Wehavedennedthemathematical expectationof arandom

variable xas


E{x)

=
fx?{dE)

=jadF&{a)

,

E

—<x>

wheretheintegralontherightisunderstoodas


+

oo
C

E(x)

=
fadF&{a)

=
lim

fa

dF&(a).

b""*
~

°°

(
1

)

-oo 6

'

Theideasuggestsitselftoconsidertheexpression

E*(x)

=
lim

f

adF&

{a) b

-*
+<x> (2)

-b

ApplicationofFormula (15) in§4,Chap.V.
Free download pdf