64 VI. Independence;TheLawofLargeNumbers
Then
sn—
E(s„)=zx+z2+
- 4-
z
n,
- 4-
E{znk)=EE3ll9(
8...
9lifc(s
n)—
EE
?
il9Il...9iJt_
1(sn)=
E(sn)- E(s
n)=0.aM^t)=
E(4,)=
^..Wecaneasilycompute alsothattherandomvariablesz
nk
(k—1,2,
...
,n) areuncorrelated.Forleti
<k
;then5E^x9l 8...
2U_i{z
niz
nk)=
*n»E^i,$(,....«*_
i(2nit)=^nttE^M....3lt_
x(s„)—E9tl9i
t...8ifc_ 1(sw)]=andtherefore
E(z
niz
nk)=
0.Wethushave
2(S
H)=0*(Zni)+0*(
Zn2
)+- ••
- O^n)
=ft,+
#2+- ••
- fin
- fin
Therefore,thecondition
issufficientforthenormalstabilityofthe
variables
s
n.§- NotesontheConceptofMathematicalExpectation
Wehavedennedthemathematical expectationof arandomvariable xas
E{x)=
fx?{dE)=jadF&{a),E—<x>wheretheintegralontherightisunderstoodas
+oo
CE(x)=
fadF&{a)=
limfadF&(a).b""*
~°°(
1)-oo 6'TheideasuggestsitselftoconsidertheexpressionE*(x)=
limfadF&{a) b-*
+<x> (2)-bApplicationofFormula (15) in§4,Chap.V.