64 VI. Independence;TheLawofLargeNumbers
Then
s
n
—
E(s„)=z
x
+
z
2
+
- 4-
z
n,
- 4-
E{z
nk)
=EE
3ll
9(
8
...
9lifc
(s
n)
—
EE
?
il9Il...9iJt
_
1
(s
n
)
=
E(s
n
)
- E(s
n
)
=
0.
aM^t)
=
E(4,)
=
^..
Wecaneasilycompute alsothattherandomvariablesz
nk
(k
—
1,2,
...
,
n) areuncorrelated.Forleti
<
k
;
then
5
E^
x9l 8
...
2U_i{
z
ni
z
nk)
=
*n»
E^i,
$(,
....«*_
i(
2
nit)
=
^nttE^M....3lt_
x
(s„)—E
9tl9i
t
...8ifc_ 1
(s
w)]
=
andtherefore
E(z
ni
z
nk)
=
0.
Wethushave
2
(S
H)
=0*(Z
ni)
+
0*(
Zn2
)
+
- ••
- O^n)
=
ft,
+
#
2
+
- ••
- fin
- fin
Therefore,thecondition
issufficientforthenormalstabilityofthe
variables
s
n
.
§
- NotesontheConceptofMathematicalExpectation
Wehavedennedthemathematical expectationof arandom
variable xas
E{x)
=
fx?{dE)
=jadF&{a)
,
E
—<x>
wheretheintegralontherightisunderstoodas
+
oo
C
E(x)
=
fadF&{a)
=
lim
fa
dF&(a).
b""*
~
°°
(
1
)
-oo 6
'
Theideasuggestsitselftoconsidertheexpression
E*(x)
=
lim
f
adF&
{a) b
-*
+<x> (2)
-b
ApplicationofFormula (15) in§4,Chap.V.