70 Appendixablesx
n.IfeventBbelongsto
®,then,accordingtothe
conditionsofthetheorem,PM(A)=P(A).(2)In the case P(A)=
our theorem
isalready
true. Let nowP(A) >0.Then
from (2) followstheformulaPa(B)=P
'{££IB)=P(B),
(3)andthereforeP(B) and
PA(B)
aretwocompletely
additivesetfunctions,coinciding
on
®;thereforetheymustremainequaltoeachotheroneverysetoftheBorelextensionB®ofthefieldStTherefore, in particular,P(A)=PA(A\=i,whichprovesourtheorem.Severalothercases inwhichwecanstatethatcertainprob-abilitiescanassumeonlythevaluesoneandzero,werediscoveredbyP.Levy.
See
P.Lriw,SuruntheoremedeM.Khintchine,Bull,desSci.Math.v.55,1931,pp.145-160,TheoremII.