AppendixZERO-OR-ONE LAW IN THE THEORYOF PROBABILITYWe have noticed several cases in which certain limitingprobabilitiesarenecessarilyequaltozero orone. Forexample,theprobabilityofconvergenceofaseriesofindependentrandom
variablesmayassumeonlythesetwovalues
1.Weshallprovenowa generaltheorem includingmanysuchcases.
Theorem:Let
x
ux
z,..
.,xn,..
.beanyrandomvariables
andletf(Xi,x
2,... ,x
n,.. .) beaBaire
function2ofthe variablesx
Xtx
2 ,...
,x„,...suchthattheconditionalprobabilityP*.*.....*{/(*)=0}oftherelationf{x
1,x2>...,xn,...)=0remains,
whenthefirstnvariablesx
lfx
2 ,..
.,x„areknown,
equalto theabsolute probabilityP{/(*)=0} (1)for
every n. Under these conditionsthe probability
(1)equalszeroorone.
Inparticular,theassumptionsofthistheoremarefulfilledifthevariables
x
naremutually
independentandif
thevalueofthefunction
f(x)
remainsunchangedwhenonlyafinitenumberofvariables arechanged.
Proof
oftheTheorem:LetusdenotebyAtheeventf(x)=0.Weshallalsoinvestigatethefield
Stofallevents whichcanbedefinedthroughsomerelations among
afinite numberofvari-1Cf.Chap.VI,§5.ThesamethingistrueoftheprobabilityPK-rf„-*o}inthestronglawoflargenumbers;atleast,whenthevariablesxnaremutu-allyindependent.2ABairefunctionisonewhichcanbeobtainedbysuccessivepassagestothelimit,ofsequencesoffunctions,startingwithpolynomials.69