Foundations of the theory of probability

(Jeff_L) #1
Appendix

ZERO-OR-ONE LAW IN THE THEORY

OF PROBABILITY

We have noticed several cases in which certain limiting

probabilitiesarenecessarilyequaltozero orone. Forexample,

theprobabilityofconvergenceofaseriesofindependentrandom


variablesmayassumeonlythesetwovalues


1

.Weshallprovenow

a generaltheorem includingmanysuchcases.


Theorem:Let
x
u

x
z,

..
.

,x

n

,

..
.

beanyrandomvariables
and

let

f(Xi,

x
2

,... ,x
n

,.. .) bea

Baire
function

2

ofthe variables

x
Xt

x
2 ,

...
,

x„,...suchthattheconditionalprobability

P*.*.....*{/(*)=

0}

of

therelation

f{x
1

,x

2>

...,x

n

,...)

=0

remains,
whenthefirstnvariablesx
lf

x
2 ,

..
.

,x„are

known,
equal

to theabsolute probability

P{/(*)=0} (1)

for


every n. Under these conditionsthe probability
(1)

equals

zeroorone.


Inparticular,theassumptionsofthistheoremarefulfilledif

thevariables
x
n

are

mutually
independentand

if
the

valueofthe

function
f(x)


remainsunchangedwhenonlyafinitenumberof

variables arechanged.


Proof
of

theTheorem:LetusdenotebyAtheevent

f(x)

=0.

Weshallalsoinvestigatethefield
St

ofallevents whichcanbe

definedthroughsomerelations among
a

finite numberofvari-

1

Cf.Chap.VI,§5.Thesamethingistrueoftheprobability

PK-rf„-*o}

inthestronglawoflargenumbers;atleast,whenthevariablesx

n

aremutu-

allyindependent.

2

ABairefunctionisonewhichcanbeobtainedbysuccessivepassagesto

thelimit,ofsequencesoffunctions,startingwithpolynomials.

69
Free download pdf