Appendix
ZERO-OR-ONE LAW IN THE THEORY
OF PROBABILITY
We have noticed several cases in which certain limiting
probabilitiesarenecessarilyequaltozero orone. Forexample,
theprobabilityofconvergenceofaseriesofindependentrandom
variablesmayassumeonlythesetwovalues
1
.Weshallprovenow
a generaltheorem includingmanysuchcases.
Theorem:Let
x
u
x
z,
..
.
,x
n
,
..
.
beanyrandomvariables
and
let
f(Xi,
x
2
,... ,x
n
,.. .) bea
Baire
function
2
ofthe variables
x
Xt
x
2 ,
...
,
x„,...suchthattheconditionalprobability
P*.*.....*{/(*)=
0}
of
therelation
f{x
1
,x
2>
...,x
n
,...)
=0
remains,
whenthefirstnvariablesx
lf
x
2 ,
..
.
,x„are
known,
equal
to theabsolute probability
P{/(*)=0} (1)
for
every n. Under these conditionsthe probability
(1)
equals
zeroorone.
Inparticular,theassumptionsofthistheoremarefulfilledif
thevariables
x
n
are
mutually
independentand
if
the
valueofthe
function
f(x)
remainsunchangedwhenonlyafinitenumberof
variables arechanged.
Proof
of
theTheorem:LetusdenotebyAtheevent
f(x)
=0.
Weshallalsoinvestigatethefield
St
ofallevents whichcanbe
definedthroughsomerelations among
a
finite numberofvari-
1
Cf.Chap.VI,§5.Thesamethingistrueoftheprobability
PK-rf„-*o}
inthestronglawoflargenumbers;atleast,whenthevariablesx
n
aremutu-
allyindependent.
2
ABairefunctionisonewhichcanbeobtainedbysuccessivepassagesto
thelimit,ofsequencesoffunctions,startingwithpolynomials.
69