Science 14Feb2020

(Wang) #1

REFERENCES AND NOTES



  1. C. G. Extavour, M. Akam,Development 130 , 5869–5884 (2003).

  2. L. W. Buss,Proc. Natl. Acad. Sci. U.S.A. 96 , 8801–8803 (1999).

  3. N. W. Blackstone, B. D. Jasker,J. Exp. Zool.297B,35–47 (2003).

  4. A. L. Radzvilavicius, Z. Hadjivasiliou, A. Pomiankowski, N. Lane,
    PLOS Biol. 14 , e2000410 (2016).

  5. C. Juliano, G. Wessel,Science 329 , 640–641 (2010).

  6. T. Nakamura, C. G. Extavour,Development 143 ,255–263 (2016).

  7. N. Irieet al.,Cell 160 , 253–268 (2015).

  8. E. Magnúsdóttiret al.,Nat. Cell Biol. 15 , 905–915 (2013).

  9. M.Saitou,S.C.Barton,M.A.Surani,Nature 418 ,293–300 (2002).

  10. J. M. Gahan, B. Bradshaw, H. Flici, U. Frank,Curr. Opin. Genet. Dev.
    40 ,65–73 (2016).

  11. T. C. Bosch, C. N. David,Dev. Biol. 121 , 182–191 (1987).

  12. A. Weismann,Die Entstehung der Sexualzellen bei
    Hydromedusen(Fischer, 1883).

  13. W. Müller,Wilhelm Roux Arch. Entwickl. Mech. Org. 155 ,
    181 – 268 (1964).

  14. C. E. Juliano, S. Z. Swartz, G. M. Wessel,Development 137 ,
    4113 – 4126 (2010).

  15. B. Bradshaw, K. Thompson, U. Frank,eLife 4 , e05506 (2015).

  16. S. M. Sanders, M. Shcheglovitova, P. Cartwright,BMC Genomics
    15 ,406(2014).

  17. A. M. Villeneuve, K. J. Hillers,Cell 106 , 647–650 (2001).

  18. M. A. Ramesh, S. B. Malik, J. M. Logsdon Jr.,Curr. Biol. 15 ,
    185 – 191 (2005).

  19. W. A. Pastoret al.,Nat. Cell Biol. 20 , 553–564 (2018).

  20. F. Nakakiet al.,Nature 501 , 222–226 (2013).

  21. K. Sasakiet al.,Cell Stem Cell 17 , 178–194 (2015).

  22. S. Aramakiet al.,Dev. Cell 27 , 516–529 (2013).

  23. S. Weberet al.,Biol. Reprod. 82 ,214–223 (2010).

  24. B. Ewen-Campen, S. Donoughe, D. N. Clarke, C. G. Extavour,
    Curr. Biol. 23 , 835–842 (2013).

  25. A. Ikmi, S. A. McKinney, K. M. Delventhal, M. C. Gibson,
    Nat. Commun. 5 , 5486 (2014).

  26. J. M. Gahanet al.,Dev. Biol. 428 , 224–231 (2017).

  27. T. Q. DuBuc, T. B. Stephenson, A. Q. Rock, M. Q. Martindale,
    Nat. Commun. 9 , 2007 (2018).

  28. S. M. Sanderset al.,BMC Genomics 19 , 649 (2018).
    29. R. D. Rosengarten, M. L. Nicotra,Curr. Biol. 21 ,R82–R92 (2011).
    30. T. Künzelet al.,Dev. Biol. 348 , 120–129 (2010).
    31. C. Rios-Rojas, J. Bowles, P. Koopman,Reproduction 149 ,
    R181–R191 (2015).
    32. Z. Cao, X. Mao, L. Luo,Cell Rep. 26 , 1709–1717.e3 (2019).
    33. G. Plickert, V. Jacoby, U. Frank, W. A. Müller, O. Mokady,
    Dev.Biol. 298 , 368–378 (2006).
    34. D. J. Duffy, G. Plickert, T. Kuenzel, W. Tilmann, U. Frank,
    Development 137 , 3057–3066 (2010).
    35. K. Hensel, T. Lotan, S. M. Sanders, P. Cartwright, U. Frank,
    Evol. Dev. 16 , 259–269 (2014).
    36. A. Töröket al.,Epigenetics Chromatin 9 , 36 (2016).
    37. S. Heet al.,Science 361 , 1377–1380 (2018).
    38. B. Mali, R. C. Millane, G. Plickert, M. Frohme, U. Frank,
    Int. J. Dev. Biol. 55 , 103–108 (2011).
    39.T.Kobayashi,M.A.Surani,Development 145 , dev150433 (2018).
    40. F. Fanget al.,Nat. Cell Biol. 20 , 655–665 (2018).


ACKNOWLEDGMENTS
We thank our laboratory members for lively discussions, our
colleagues C. Morrison and G. Schlosser for comments on the
manuscript, and the NIH Intramural Sequencing Center (NISC) for
generating the sequence data. All flow cytometry and imaging
cytometry analyses were performed in the Flow Cytometry Core
Facility at NUI Galway.Funding:U.F. is a Wellcome Trust
Investigator in Science (grant no. 210722/Z/18/Z, co-funded by
the SFI-HRB-Wellcome Biomedical Research Partnership). This
work was also funded by a Science Foundation Ireland Investigator
Award to U.F. (grant no. 11/PI/1020); by CURAM, SFI Centre for
Research in Medical Devices (to U.F.); and by the Intramural
Research Program of the National Human Genome Research
Institute, National Institutes of Health to A.D.B. (ZIA HG000140).
T.Q.D. was an EMBO Long-Term Fellow (grant no. ALTF 68-2016).
S.G.G. was a Marie Curie Incoming International Fellow (project
623748) and was also supported by a Science Foundation Ireland
SIRG award (grant no. 13/SIRG/2125). F. is a Hardiman Scholar
and is also supported by Thomas Crawford Hayes Research Grant.
Funding in support of imaging cytometry was received from

Science Foundation Ireland under research infrastructure grant
no. 16/RI/3760 and from the European Regional Development Fund.
Author contributions:T.Q.D. and U.F. conceptualized this project.
T.Q.D. collected all RNA samples, generated stable transgenic
animals, created CRISPR-Cas9 mutants, conducted short hairpin
experiments, and performed all microinjections, IF, and in situ
hybridization experiments. T.B. and T.Q.D. performed mutant screens.
E.C., S.H., and T.Q.D. performed the FACS experiments. C.E.S., S.N.B.,
P.G., S.G.G., and A.D.B. analyzed all RNA-seq data and performed
the computational analysis. E.T.M. generated the Piwi1 antibody.
F. designed and tested the shRNAs. J.M.G. cloned theb-tubulin
regulatory regions. T.Q.D. and U.F. wrote the paper.Competing
interests:The authors declare no competing interests.Data and
materials availability:The raw reads utilized to generate the tissue-
and cell-specific differential expression analyses (table S1 and dataset
S1) are available through the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) at http://www.ncbi.nlm.
nih.gov/sra. Tissue-specific reads fromHydractinia echinataare
available as accession numbers SRR9332370 to SRR9332387. Bulk
cell reads fromH. symbiolongicarpusare available under the
accession numbers SRR9331388 to SRR9331403. Detailed descriptions
of each dataset can be found in the SRA Data tab of table S1 and
dataset S1. Transcriptomes generated for this manuscript and draft
genomes for both species are available for download at theHydractinia
Genome Portal (https://research.nhgri.nih.gov/hydractinia/).
SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/367/6479/757/suppl/DC1
Materials and Methods
Figs. S1 to S12
Table S1
References ( 41 – 63 )
Movies S1 and S2
Datasets S1 and S2
View/request a protocol for this paper fromBio-protocol.

10 July 2019; accepted 6 December 2019
10.1126/science.aay6782

DuBucet al.,Science 367 , 757–762 (2020) 14 February 2020 6of6


Wnt3::Tfap2-GFP
regional

germ
cell

somatic cells
β-Tubulin::Tfap2-GFP

germ
cell

germ cell

Tfap2

GFP

Merge

Piwi1::Tfap2-GFP

A B

C

D

EI

F

H2B3/4

20 μm

100 μm

20 μm

i-cells

K

i-cell

J

Cnidarian
egg lectin

H

G

Fig. 5. Ectopic expression ofTfap2in i-cells induces germ fate.(A)Wnt3
promoter-driven Tfap2-GFP. Transgene expression is restricted to the oral end and
causes no visible phenotype. (B)b-tubulinpromoter-driven Tfap2-GFP. Transgene is
expressed in somatic cells and causes no visible phenotype. (CtoK)Piwi1promoter-
driven Tfap2-GFP. Transgene is expressed only in i-cells, transforming them to
germ cells. (C) Ectopic early oocyte in the gastrodermis of a 48-hour-old larva,
identified by morphology. (D) Sperm progenitors in the gastrodermis of a 48-hour-old


larva, identified byH2B3/4-expression. (E and F) Ectopic oocytes in the gastrodermis
of a mosaic transgenic feeding polyp expressing Tfap2-GFP under thePiwi1promoter,
where the transgene had been suppressed for 2 weeks by a shRNA. (G to I) Double
mRNA fluorescence in situ hybridization showing colocalization ofGFPandCelin a
mosaic transgenic feeding polyp treated as in (E). (G)GFPmRNA. (H)CelmRNA.
(I) Merge. (J) Schematic illustrating the localization of (G) to (I) in the polyp. (K)
Tfap2 expression in i-cells converts them to germ cells.

RESEARCH | RESEARCH ARTICLE

Free download pdf