the functional changes observed in different
conditions relate to changes in their organiza-
tion? Recent developments in cryo–electron
tomography hold the promise to provide de-
tailed maps of the complexes in the membrane
( 97 , 98 ). These results, combined with func-
tional in vivo data and advanced calculations
and modeling, should enable us to understand
the various processes in physiological condi-
tions. Highly sophisticated x-ray free electron
laser experiments on PSI and PSII crystals will
permit observation of the photosystems in
action, providing new insights for, e.g., elec-
tron transfer and water splitting ( 99 – 101 )
REFERENCES AND NOTES
- R. E. Blankenship,Molecular Mechanisms of Photosynthesis
(Blackwell Science, 2014). - X. G. Zhu, S. P. Long, D. R. Ort, Improving photosynthetic
efficiency for greater yield.Annu. Rev. Plant Biol. 61 , 235– 261
(2010). doi:10.1146/annurev-arplant-042809-112206;
pmid: 20192734 - D. R. Ortet al., Redesigning photosynthesis to sustainably
meet global food and bioenergy demand.Proc. Natl. Acad.
Sci. U.S.A. 112 , 8529–8536 (2015). doi:10.1073/
pnas.1424031112; pmid: 26124102 - J. Kromdijket al., Improving photosynthesis and crop
productivity by accelerating recovery from photoprotection.
Science 354 , 857–861 (2016). doi:10.1126/science.aai8878;
pmid: 27856901 - P. F. South, A. P. Cavanagh, H. W. Liu, D. R. Ort, Synthetic
glycolate metabolism pathways stimulate crop growth and
productivity in the field.Science 363 , eaat9077 (2019).
doi:10.1126/science.aat9077; pmid: 30606819 - M. Ermakova, P. E. Lopez-Calcagno, C. A. Raines,
R. T. Furbank, S. von Caemmerer, Overexpression of the
Rieske FeS protein of the Cytochromeb 6 fcomplex increases
C 4 photosynthesis inSetaria viridis.Commun. Biol. 2 ,314
(2019). doi:10.1038/s42003-019-0561-9; pmid: 31453378 - A. J. Simkin, P. E. López-Calcagno, C. A. Raines, Feeding the
world: Improving photosynthetic efficiency for sustainable
crop production.J. Exp. Bot. 70 , 1119–1140 (2019).
doi:10.1093/jxb/ery445; pmid: 30772919 - R. Croce, R. van Grondelle, H. van Amerongen, I. H. van Stokkum,
Light Harvesting in Photosynthesis(Foundations of Biochemistry
and Biophysics Series, CRC, ed. 1, 2018). - E. Belgio, M. P. Johnson, S. Jurić, A. V. Ruban, Higher plant
photosystem II light-harvesting antenna, not the reaction
center, determines the excited-state lifetime-both the
maximum and the nonphotochemically quenched.Biophys. J.
102 , 2761–2771 (2012). doi:10.1016/j.bpj.2012.05.004;
pmid: 22735526 - R. Croce, H. van Amerongen, Light-harvesting in photosystem
I.Photosynth. Res. 116 , 153–166 (2013). doi:10.1007/
s11120-013-9838-x; pmid: 23645376 - B. Gobets, R. van Grondelle, Energy transfer and trapping in
photosystem I.Biochim. Biophys. Acta 1507 ,80–99 (2001).
doi:10.1016/S0005-2728(01)00203-1; pmid: 11687209 - B. van Oortet al., Effect of antenna-depletion in Photosystem
II on excitation energy transfer inArabidopsis thaliana.
Biophys. J. 98 , 922–931 (2010). doi:10.1016/
j.bpj.2009.11.012; pmid: 20197046 - P. H. Lambrev, Y. Miloslavina, P. Jahns, A. R. Holzwarth, On
the relationship between non-photochemical quenching and
photoprotection of Photosystem II.Biochim. Biophys. Acta
1817 , 760–769 (2012). doi:10.1016/j.bbabio.2012.02.002;
pmid: 22342615 - R. E. Blankenshipet al., Comparing photosynthetic and
photovoltaic efficiencies and recognizing the potential for
improvement.Science 332 , 805–809 (2011). doi:10.1126/
science.1200165; pmid: 21566184 - N.Nelson, W. Junge, Structure and energy transfer in
photosystems of oxygenic photosynthesis.Annu. Rev.
Biochem. 84 , 659–683 (2015). doi:10.1146/annurev-
biochem-092914-041942; pmid: 25747397 - T. Mirkovicet al., Light absorption and energy transfer in the
antenna complexes of photosynthetic organisms.Chem. Rev.
117 , 249–293 (2017). doi:10.1021/acs.chemrev.6b00002;
pmid: 27428615
17. N. Adir, S. Bar-Zvi, D. Harris, The amazing phycobilisome.
Biochim. Biophys. Acta Bioenerg. 1861 , 148047 (2020).
doi:10.1016/j.bbabio.2019.07.002; pmid: 31306623
18. J. Zhanget al., Structure of phycobilisome from the red alga
Griffithsia pacifica.Nature 551 ,57–63 (2017). doi:10.1038/
nature24278; pmid: 29045394
19. H. Liuet al., Phycobilisomes supply excitations to both
photosystems in a megacomplex in cyanobacteria.Science
342 , 1104–1107 (2013). doi:10.1126/science.1242321;
pmid: 24288334
20. J. Maet al., Structural basis of energy transfer in Porphyridium
purpureum phycobilisome.Nature 579 ,146–151 (2020).
doi:10.1038/s41586-020-2020-7; pmid: 32076272
21. X. Pan, P. Cao, X. Su, Z. Liu, M. Li, Structural analysis and
comparison of light-harvesting complexes I and II.Biochim.
Biophys. Acta Bioenerg. 1861 , 148038 (2020). doi:10.1016/
j.bbabio.2019.06.010; pmid: 31229568
22. L. Nicol, R. Croce,“Light harvesting in higher plants and
green algae,”inLight Harvesting in Photosynthesis, R. Croce,
R. van Grondelle, H. van Amerongen, I. H. van Stokkum, Eds.
(Foundations of Biochemistry and Biophysics Series, CRC,
ed. 1, 2018), pp. 59–76.
23. C. Büchel, Light harvesting complexes in chlorophyll
c-containing algae.Biochim. Biophys. Acta Bioenerg. 1861 ,
148027 (2020). pmid: 31153887
24. W.Wanget al., Structural basis for blue-green light
harvesting and energy dissipation in diatoms.Science 363 ,
eaav0365 (2019).
doi:10.1126/science.aav0365; pmid: 30733387
25. X. Qin, M. Suga, T. Kuang, J. R. Shen, Structural basis for
energy transfer pathways in the plant PSI-LHCI
supercomplex.Science 348 , 989–995 (2015). doi:10.1126/
science.aab0214; pmid: 26023133
26. Y.Mazor,A.Borovikova,I.Caspy,N.Nelson,Structureof
the plant photosystem I supercomplex at 2.6 Å resolution.
Nat. Plants 3 , 17014 (2017). doi:10.1038/nplants.2017.14;
pmid: 28248295
27. X. Panet al., Structure of the maize photosystem I
supercomplex with light-harvesting complexes I and II.
Science 360 , 1109–1113 (2018). doi:10.1126/science.aat1156;
pmid: 29880686
28. X. Suet al., Structure and assembly mechanism of plant
C 2 S 2 M 2 -type PSII-LHCII supercomplex.Science 357 , 815– 820
(2017). doi:10.1126/science.aan0327; pmid: 28839073
29. X. Weiet al., Structure of spinach photosystem II-LHCII
supercomplex at 3.2 Å resolution.Nature 534 ,69–74 (2016).
doi:10.1038/nature18020; pmid: 27251276
30. L. S. van Bezouwenet al., Subunit and chlorophyll organization of
the plant photosystem II supercomplex.Nat. Plants 3 ,17080
(2017). doi:10.1038/nplants.2017.80;pmid: 28604725
31. R. Kouřil, J. P. Dekker, E. J. Boekema, Supramolecular
organization of photosystem II in green plants.Biochim.
Biophys. Acta 1817 ,2–12 (2012). doi:10.1016/
j.bbabio.2011.05.024; pmid: 21723248
32. R. Kouřil, L. Nosek, J. Bartoš, E. J. Boekema, P. Ilík,
Evolutionary loss of light-harvesting proteins Lhcb6 and
Lhcb3 in major land plant groups—Break-up of current
dogma.New Phytol. 210 , 808–814 (2016). doi:10.1111/
nph.13947; pmid: 27001142
33. R. Croce, H. van Amerongen, Natural strategies for
photosynthetic light harvesting.Nat. Chem. Biol. 10 , 492– 501
(2014). doi:10.1038/nchembio.1555; pmid: 24937067
34. L. Shenet al., Structure of a C 2 S 2 M 2 N 2 -type PSII-LHCII
supercomplex from the green algaChlamydomonas
reinhardtii.Proc. Natl. Acad. Sci. U.S.A. 116 , 21246– 21255
(2019). doi:10.1073/pnas.1912462116; pmid: 31570614
35. X. Shenget al., Structural insight into light harvesting for
photosystem II in green algae.Nat. Plants 5 , 1320– 1330
(2019). doi:10.1038/s41477-019-0543-4; pmid: 31768031
36. R. N. Burton-Smithet al., Structural determination of the
large photosystem II-light-harvesting complex II
supercomplex ofChlamydomonas reinhardtiiusing nonionic
amphipol.J. Biol. Chem. 294 , 15003–15013 (2019).
doi:10.1074/jbc.RA119.009341; pmid: 31420447
37. X. Suet al., Antenna arrangement and energy transfer
pathways of a green algal photosystem-I-LHCI supercomplex.
Nat. Plants 5 , 273–281 (2019). doi:10.1038/s41477-019-
0380-5; pmid: 30850819
38. M. Sugaet al., Structure of the green algal photosystem I
supercomplex with a decameric light-harvesting complex I.
Nat. Plants 5 , 626–636 (2019). doi:10.1038/s41477-019-
0438-4; pmid: 31182847
39. X. Piet al., The pigment-protein network of a diatom
photosystem II-light-harvesting antenna supercomplex.
Science 365 , eaax4406 (2019). doi:10.1126/science.
aax4406; pmid: 31371578
- R. Nagaoet al., Structural basis for energy harvesting and
dissipation in a diatom PSII-FCPII supercomplex.Nat. Plants
5 , 890–901 (2019). doi:10.1038/s41477-019-0477-x;
pmid: 31358960 - F. J. Van Eerden, M. N. Melo, P. W. J. M. Frederix, X. Periole,
S. J. Marrink, Exchange pathways of plastoquinone and
plastoquinol in the photosystem II complex.Nat. Commun. 8 ,
15214 (2017). doi:10.1038/ncomms15214; pmid: 28489071 - N. Sakashita, H. C. Watanabe, T. Ikeda, H. Ishikita,
Structurally conserved channels in cyanobacterial and plant
photosystem II.Photosynth. Res. 133 ,75–85 (2017).
doi:10.1007/s11120-017-0347-1; pmid: 28188547 - D. I. G. Bennett, K. Amarnath, G. R. Fleming, A structure-based
model of energy transfer reveals the principles of light harvesting
in photosystem II supercomplexes.J. Am. Chem. Soc. 135 ,
9164 – 9173 (2013). doi:10.1021/ja403685a; pmid: 23679235 - C. Kreisbeck, A. Aspuru-Guzik, Efficiency of energy funneling
in the photosystem II supercomplex of higher plants.Chem.
Sci. 7 , 4174–4183 (2016). doi:10.1039/C5SC04296H;
pmid: 30155062 - V. Novoderezhkin, A. Marin, R. van Grondelle,
Intra- and inter-monomeric transfers in the light
harvesting LHCII complex: The Redfield-Förster picture.
Phys.Chem.Chem.Phys. 13 ,17093–17103 (2011).
doi:10.1039/c1cp21079c; pmid: 21866281 - G. S. Schlau-Cohenet al., Pathways of energy flow in
LHCII from two-dimensional electronic spectroscopy.
J. Phys. Chem. B 113 , 15352–15363 (2009). doi:10.1021/
jp9066586; pmid: 19856954 - P. H. Lambrev, P. Akhtar, H. S. Tan, Insights into the
mechanisms and dynamics of energy transfer in plant light-
harvesting complexes from two-dimensional electronic
spectroscopy.Biochim. Biophys. Acta Bioenerg. 1861 , 148050
(2019). doi:10.1016/j.bbabio.2019.07.005; pmid: 31326408 - V. Mascoli, V. Novoderezhkin, N. Liguori, P. Xu, R. Croce,
Design principles of solar light harvesting in plants:
Functional architecture of the monomeric antenna CP29.
Biochim. Biophys. Acta Bioenerg. 1861 , 148156 (2020).
doi:10.1016/j.bbabio.2020.148156; pmid: 31987813 - J. Chmeliov, G. Trinkunas, H. van Amerongen, L. Valkunas, Light
harvesting in a fluctuating antenna.J. Am. Chem. Soc. 136 ,
8963 – 8972 (2014). doi:10.1021/ja5027858;pmid:24870124 - N. Nelson, Plant photosystem I: The most efficient nano-
photochemical machine.J. Nanosci. Nanotechnol. 9 ,
1709 – 1713 (2009). doi: 10 .1166/jnn.2009.SI01;
pmid: 19435029 - M. Suga, J. R. Shen, Structural variations of photosystem
I-antenna supercomplex in response to adaptations to
different light environments.Curr. Opin. Struct. Biol. 63 ,
10 – 17 (2020). doi:10.1016/j.sbi.2020.02.005; pmid: 32294569 - R. Croce, A close view of photosystem I.Science 348 ,
970 – 971 (2015). doi:10.1126/science.aab3387;pmid:26023121 - E. Wientjes, I. H. van Stokkum, H. van Amerongen, R. Croce,
Excitation-energy transfer dynamics of higher plant photosystem
I light-harvesting complexes.Biophys. J. 100 ,1372– 1380
(2011). doi:10.1016/j.bpj.2011.01.030; pmid: 21354411 - C. Slavov, M. Ballottari, T. Morosinotto, R. Bassi,
A. R. Holzwarth, Trap-limited charge separation kinetics in
higher plant photosystem I complexes.Biophys. J. 94 ,
3601 – 3612 (2008). doi:10.1529/biophysj.107.117101;
pmid: 18222996 - E. Wientjes, I. H. van Stokkum, H. van Amerongen, R. Croce,
The role of the individual Lhcas in photosystem I excitation
energy trapping.Biophys. J. 101 , 745–754 (2011).
doi:10.1016/j.bpj.2011.06.045; pmid: 21806943 - E. Engelmannet al., Influence of the photosystem I-light
harvesting complex I antenna domains on fluorescence
decay.Biochemistry 45 , 6947–6955 (2006). doi:10.1021/
bi060243p; pmid: 16734430 - E. Wientjes, H. van Amerongen, R. Croce, LHCII is an antenna
of both photosystems after long-term acclimation.Biochim.
Biophys. Acta 1827 , 420–426 (2013). doi:10.1016/
j.bbabio.2012.12.009; pmid: 23298812 - M. Grieco, M. Suorsa, A. Jajoo, M. Tikkanen, E. M. Aro, Light-
harvesting II antenna trimers connect energetically the entire
photosynthetic machinery - including both photosystems II
and I.Biochim. Biophys. Acta 1847 , 607–619 (2015).
doi:10.1016/j.bbabio.2015.03.004; pmid: 25843550 - V. U. Chukhutsina, X. Liu, P. Xu, R. Croce, Light-harvesting
complex II is an antenna of photosystem I in dark-adapted
plants.Nat. Plants 6 , 860–868 (2020). doi:10.1038/s41477-
020-0693-4; pmid: 32572215
Croceet al.,Science 369 , eaay2058 (2020) 21 August 2020 8of9
RESEARCH | REVIEW