Science - USA (2020-08-21)

(Antfer) #1

the functional changes observed in different
conditions relate to changes in their organiza-
tion? Recent developments in cryo–electron
tomography hold the promise to provide de-
tailed maps of the complexes in the membrane
( 97 , 98 ). These results, combined with func-
tional in vivo data and advanced calculations
and modeling, should enable us to understand
the various processes in physiological condi-
tions. Highly sophisticated x-ray free electron
laser experiments on PSI and PSII crystals will
permit observation of the photosystems in
action, providing new insights for, e.g., elec-
tron transfer and water splitting ( 99 – 101 )


REFERENCES AND NOTES



  1. R. E. Blankenship,Molecular Mechanisms of Photosynthesis
    (Blackwell Science, 2014).

  2. X. G. Zhu, S. P. Long, D. R. Ort, Improving photosynthetic
    efficiency for greater yield.Annu. Rev. Plant Biol. 61 , 235– 261
    (2010). doi:10.1146/annurev-arplant-042809-112206;
    pmid: 20192734

  3. D. R. Ortet al., Redesigning photosynthesis to sustainably
    meet global food and bioenergy demand.Proc. Natl. Acad.
    Sci. U.S.A. 112 , 8529–8536 (2015). doi:10.1073/
    pnas.1424031112; pmid: 26124102

  4. J. Kromdijket al., Improving photosynthesis and crop
    productivity by accelerating recovery from photoprotection.
    Science 354 , 857–861 (2016). doi:10.1126/science.aai8878;
    pmid: 27856901

  5. P. F. South, A. P. Cavanagh, H. W. Liu, D. R. Ort, Synthetic
    glycolate metabolism pathways stimulate crop growth and
    productivity in the field.Science 363 , eaat9077 (2019).
    doi:10.1126/science.aat9077; pmid: 30606819

  6. M. Ermakova, P. E. Lopez-Calcagno, C. A. Raines,
    R. T. Furbank, S. von Caemmerer, Overexpression of the
    Rieske FeS protein of the Cytochromeb 6 fcomplex increases
    C 4 photosynthesis inSetaria viridis.Commun. Biol. 2 ,314
    (2019). doi:10.1038/s42003-019-0561-9; pmid: 31453378

  7. A. J. Simkin, P. E. López-Calcagno, C. A. Raines, Feeding the
    world: Improving photosynthetic efficiency for sustainable
    crop production.J. Exp. Bot. 70 , 1119–1140 (2019).
    doi:10.1093/jxb/ery445; pmid: 30772919

  8. R. Croce, R. van Grondelle, H. van Amerongen, I. H. van Stokkum,
    Light Harvesting in Photosynthesis(Foundations of Biochemistry
    and Biophysics Series, CRC, ed. 1, 2018).

  9. E. Belgio, M. P. Johnson, S. Jurić, A. V. Ruban, Higher plant
    photosystem II light-harvesting antenna, not the reaction
    center, determines the excited-state lifetime-both the
    maximum and the nonphotochemically quenched.Biophys. J.
    102 , 2761–2771 (2012). doi:10.1016/j.bpj.2012.05.004;
    pmid: 22735526

  10. R. Croce, H. van Amerongen, Light-harvesting in photosystem
    I.Photosynth. Res. 116 , 153–166 (2013). doi:10.1007/
    s11120-013-9838-x; pmid: 23645376

  11. B. Gobets, R. van Grondelle, Energy transfer and trapping in
    photosystem I.Biochim. Biophys. Acta 1507 ,80–99 (2001).
    doi:10.1016/S0005-2728(01)00203-1; pmid: 11687209

  12. B. van Oortet al., Effect of antenna-depletion in Photosystem
    II on excitation energy transfer inArabidopsis thaliana.
    Biophys. J. 98 , 922–931 (2010). doi:10.1016/
    j.bpj.2009.11.012; pmid: 20197046

  13. P. H. Lambrev, Y. Miloslavina, P. Jahns, A. R. Holzwarth, On
    the relationship between non-photochemical quenching and
    photoprotection of Photosystem II.Biochim. Biophys. Acta
    1817 , 760–769 (2012). doi:10.1016/j.bbabio.2012.02.002;
    pmid: 22342615

  14. R. E. Blankenshipet al., Comparing photosynthetic and
    photovoltaic efficiencies and recognizing the potential for
    improvement.Science 332 , 805–809 (2011). doi:10.1126/
    science.1200165; pmid: 21566184

  15. N.Nelson, W. Junge, Structure and energy transfer in
    photosystems of oxygenic photosynthesis.Annu. Rev.
    Biochem. 84 , 659–683 (2015). doi:10.1146/annurev-
    biochem-092914-041942; pmid: 25747397

  16. T. Mirkovicet al., Light absorption and energy transfer in the
    antenna complexes of photosynthetic organisms.Chem. Rev.
    117 , 249–293 (2017). doi:10.1021/acs.chemrev.6b00002;
    pmid: 27428615
    17. N. Adir, S. Bar-Zvi, D. Harris, The amazing phycobilisome.
    Biochim. Biophys. Acta Bioenerg. 1861 , 148047 (2020).
    doi:10.1016/j.bbabio.2019.07.002; pmid: 31306623
    18. J. Zhanget al., Structure of phycobilisome from the red alga
    Griffithsia pacifica.Nature 551 ,57–63 (2017). doi:10.1038/
    nature24278; pmid: 29045394
    19. H. Liuet al., Phycobilisomes supply excitations to both
    photosystems in a megacomplex in cyanobacteria.Science
    342 , 1104–1107 (2013). doi:10.1126/science.1242321;
    pmid: 24288334
    20. J. Maet al., Structural basis of energy transfer in Porphyridium
    purpureum phycobilisome.Nature 579 ,146–151 (2020).
    doi:10.1038/s41586-020-2020-7; pmid: 32076272
    21. X. Pan, P. Cao, X. Su, Z. Liu, M. Li, Structural analysis and
    comparison of light-harvesting complexes I and II.Biochim.
    Biophys. Acta Bioenerg. 1861 , 148038 (2020). doi:10.1016/
    j.bbabio.2019.06.010; pmid: 31229568
    22. L. Nicol, R. Croce,“Light harvesting in higher plants and
    green algae,”inLight Harvesting in Photosynthesis, R. Croce,
    R. van Grondelle, H. van Amerongen, I. H. van Stokkum, Eds.
    (Foundations of Biochemistry and Biophysics Series, CRC,
    ed. 1, 2018), pp. 59–76.
    23. C. Büchel, Light harvesting complexes in chlorophyll
    c-containing algae.Biochim. Biophys. Acta Bioenerg. 1861 ,
    148027 (2020). pmid: 31153887
    24. W.Wanget al., Structural basis for blue-green light
    harvesting and energy dissipation in diatoms.Science 363 ,
    eaav0365 (2019).
    doi:10.1126/science.aav0365; pmid: 30733387
    25. X. Qin, M. Suga, T. Kuang, J. R. Shen, Structural basis for
    energy transfer pathways in the plant PSI-LHCI
    supercomplex.Science 348 , 989–995 (2015). doi:10.1126/
    science.aab0214; pmid: 26023133
    26. Y.Mazor,A.Borovikova,I.Caspy,N.Nelson,Structureof
    the plant photosystem I supercomplex at 2.6 Å resolution.
    Nat. Plants 3 , 17014 (2017). doi:10.1038/nplants.2017.14;
    pmid: 28248295
    27. X. Panet al., Structure of the maize photosystem I
    supercomplex with light-harvesting complexes I and II.
    Science 360 , 1109–1113 (2018). doi:10.1126/science.aat1156;
    pmid: 29880686
    28. X. Suet al., Structure and assembly mechanism of plant
    C 2 S 2 M 2 -type PSII-LHCII supercomplex.Science 357 , 815– 820
    (2017). doi:10.1126/science.aan0327; pmid: 28839073
    29. X. Weiet al., Structure of spinach photosystem II-LHCII
    supercomplex at 3.2 Å resolution.Nature 534 ,69–74 (2016).
    doi:10.1038/nature18020; pmid: 27251276
    30. L. S. van Bezouwenet al., Subunit and chlorophyll organization of
    the plant photosystem II supercomplex.Nat. Plants 3 ,17080
    (2017). doi:10.1038/nplants.2017.80;pmid: 28604725
    31. R. Kouřil, J. P. Dekker, E. J. Boekema, Supramolecular
    organization of photosystem II in green plants.Biochim.
    Biophys. Acta 1817 ,2–12 (2012). doi:10.1016/
    j.bbabio.2011.05.024; pmid: 21723248
    32. R. Kouřil, L. Nosek, J. Bartoš, E. J. Boekema, P. Ilík,
    Evolutionary loss of light-harvesting proteins Lhcb6 and
    Lhcb3 in major land plant groups—Break-up of current
    dogma.New Phytol. 210 , 808–814 (2016). doi:10.1111/
    nph.13947; pmid: 27001142
    33. R. Croce, H. van Amerongen, Natural strategies for
    photosynthetic light harvesting.Nat. Chem. Biol. 10 , 492– 501
    (2014). doi:10.1038/nchembio.1555; pmid: 24937067
    34. L. Shenet al., Structure of a C 2 S 2 M 2 N 2 -type PSII-LHCII
    supercomplex from the green algaChlamydomonas
    reinhardtii.Proc. Natl. Acad. Sci. U.S.A. 116 , 21246– 21255
    (2019). doi:10.1073/pnas.1912462116; pmid: 31570614
    35. X. Shenget al., Structural insight into light harvesting for
    photosystem II in green algae.Nat. Plants 5 , 1320– 1330
    (2019). doi:10.1038/s41477-019-0543-4; pmid: 31768031
    36. R. N. Burton-Smithet al., Structural determination of the
    large photosystem II-light-harvesting complex II
    supercomplex ofChlamydomonas reinhardtiiusing nonionic
    amphipol.J. Biol. Chem. 294 , 15003–15013 (2019).
    doi:10.1074/jbc.RA119.009341; pmid: 31420447
    37. X. Suet al., Antenna arrangement and energy transfer
    pathways of a green algal photosystem-I-LHCI supercomplex.
    Nat. Plants 5 , 273–281 (2019). doi:10.1038/s41477-019-
    0380-5; pmid: 30850819
    38. M. Sugaet al., Structure of the green algal photosystem I
    supercomplex with a decameric light-harvesting complex I.
    Nat. Plants 5 , 626–636 (2019). doi:10.1038/s41477-019-
    0438-4; pmid: 31182847
    39. X. Piet al., The pigment-protein network of a diatom
    photosystem II-light-harvesting antenna supercomplex.


Science 365 , eaax4406 (2019). doi:10.1126/science.
aax4406; pmid: 31371578


  1. R. Nagaoet al., Structural basis for energy harvesting and
    dissipation in a diatom PSII-FCPII supercomplex.Nat. Plants
    5 , 890–901 (2019). doi:10.1038/s41477-019-0477-x;
    pmid: 31358960

  2. F. J. Van Eerden, M. N. Melo, P. W. J. M. Frederix, X. Periole,
    S. J. Marrink, Exchange pathways of plastoquinone and
    plastoquinol in the photosystem II complex.Nat. Commun. 8 ,
    15214 (2017). doi:10.1038/ncomms15214; pmid: 28489071

  3. N. Sakashita, H. C. Watanabe, T. Ikeda, H. Ishikita,
    Structurally conserved channels in cyanobacterial and plant
    photosystem II.Photosynth. Res. 133 ,75–85 (2017).
    doi:10.1007/s11120-017-0347-1; pmid: 28188547

  4. D. I. G. Bennett, K. Amarnath, G. R. Fleming, A structure-based
    model of energy transfer reveals the principles of light harvesting
    in photosystem II supercomplexes.J. Am. Chem. Soc. 135 ,
    9164 – 9173 (2013). doi:10.1021/ja403685a; pmid: 23679235

  5. C. Kreisbeck, A. Aspuru-Guzik, Efficiency of energy funneling
    in the photosystem II supercomplex of higher plants.Chem.
    Sci. 7 , 4174–4183 (2016). doi:10.1039/C5SC04296H;
    pmid: 30155062

  6. V. Novoderezhkin, A. Marin, R. van Grondelle,
    Intra- and inter-monomeric transfers in the light
    harvesting LHCII complex: The Redfield-Förster picture.
    Phys.Chem.Chem.Phys. 13 ,17093–17103 (2011).
    doi:10.1039/c1cp21079c; pmid: 21866281

  7. G. S. Schlau-Cohenet al., Pathways of energy flow in
    LHCII from two-dimensional electronic spectroscopy.
    J. Phys. Chem. B 113 , 15352–15363 (2009). doi:10.1021/
    jp9066586; pmid: 19856954

  8. P. H. Lambrev, P. Akhtar, H. S. Tan, Insights into the
    mechanisms and dynamics of energy transfer in plant light-
    harvesting complexes from two-dimensional electronic
    spectroscopy.Biochim. Biophys. Acta Bioenerg. 1861 , 148050
    (2019). doi:10.1016/j.bbabio.2019.07.005; pmid: 31326408

  9. V. Mascoli, V. Novoderezhkin, N. Liguori, P. Xu, R. Croce,
    Design principles of solar light harvesting in plants:
    Functional architecture of the monomeric antenna CP29.
    Biochim. Biophys. Acta Bioenerg. 1861 , 148156 (2020).
    doi:10.1016/j.bbabio.2020.148156; pmid: 31987813

  10. J. Chmeliov, G. Trinkunas, H. van Amerongen, L. Valkunas, Light
    harvesting in a fluctuating antenna.J. Am. Chem. Soc. 136 ,
    8963 – 8972 (2014). doi:10.1021/ja5027858;pmid:24870124

  11. N. Nelson, Plant photosystem I: The most efficient nano-
    photochemical machine.J. Nanosci. Nanotechnol. 9 ,
    1709 – 1713 (2009). doi: 10 .1166/jnn.2009.SI01;
    pmid: 19435029

  12. M. Suga, J. R. Shen, Structural variations of photosystem
    I-antenna supercomplex in response to adaptations to
    different light environments.Curr. Opin. Struct. Biol. 63 ,
    10 – 17 (2020). doi:10.1016/j.sbi.2020.02.005; pmid: 32294569

  13. R. Croce, A close view of photosystem I.Science 348 ,
    970 – 971 (2015). doi:10.1126/science.aab3387;pmid:26023121

  14. E. Wientjes, I. H. van Stokkum, H. van Amerongen, R. Croce,
    Excitation-energy transfer dynamics of higher plant photosystem
    I light-harvesting complexes.Biophys. J. 100 ,1372– 1380
    (2011). doi:10.1016/j.bpj.2011.01.030; pmid: 21354411

  15. C. Slavov, M. Ballottari, T. Morosinotto, R. Bassi,
    A. R. Holzwarth, Trap-limited charge separation kinetics in
    higher plant photosystem I complexes.Biophys. J. 94 ,
    3601 – 3612 (2008). doi:10.1529/biophysj.107.117101;
    pmid: 18222996

  16. E. Wientjes, I. H. van Stokkum, H. van Amerongen, R. Croce,
    The role of the individual Lhcas in photosystem I excitation
    energy trapping.Biophys. J. 101 , 745–754 (2011).
    doi:10.1016/j.bpj.2011.06.045; pmid: 21806943

  17. E. Engelmannet al., Influence of the photosystem I-light
    harvesting complex I antenna domains on fluorescence
    decay.Biochemistry 45 , 6947–6955 (2006). doi:10.1021/
    bi060243p; pmid: 16734430

  18. E. Wientjes, H. van Amerongen, R. Croce, LHCII is an antenna
    of both photosystems after long-term acclimation.Biochim.
    Biophys. Acta 1827 , 420–426 (2013). doi:10.1016/
    j.bbabio.2012.12.009; pmid: 23298812

  19. M. Grieco, M. Suorsa, A. Jajoo, M. Tikkanen, E. M. Aro, Light-
    harvesting II antenna trimers connect energetically the entire
    photosynthetic machinery - including both photosystems II
    and I.Biochim. Biophys. Acta 1847 , 607–619 (2015).
    doi:10.1016/j.bbabio.2015.03.004; pmid: 25843550

  20. V. U. Chukhutsina, X. Liu, P. Xu, R. Croce, Light-harvesting
    complex II is an antenna of photosystem I in dark-adapted
    plants.Nat. Plants 6 , 860–868 (2020). doi:10.1038/s41477-
    020-0693-4; pmid: 32572215


Croceet al.,Science 369 , eaay2058 (2020) 21 August 2020 8of9


RESEARCH | REVIEW

Free download pdf