CHAPTER 17. TRIGONOMETRY 17.4
Exercise 17 - 10
- (a) Find the general solution of each of thefollowing equations. Give answers to one decimal
place.
(b) Find all solutions inthe interval θ∈ [− 180 ◦;360◦].
i. sin θ =− 0 , 327
ii. cos θ = 0, 231
iii. tan θ =− 1 , 375
iv. sin θ = 2, 439 - (a) Find the general solution of each of thefollowing equations. Give answers to one decimal
place.
(b) Find all solutions inthe interval θ∈ [0◦;360◦].
i. cos θ = 0
ii. sin θ =
√
3
2
iii. 2cos θ−
√
3 = 0
iv. tan θ =− 1
v. 5cos θ =− 2
vi. 3sin θ =− 1 , 5
vii. 2cos θ + 1,3 = 0
viii. 0 ,5tan θ + 2,5 = 1, 7
- (a) Write down thegeneral solution for x if tan x =− 1 , 12.
(b) Hence determine values of x∈ [− 180 ◦;180◦]. - (a) Write down thegeneral solution for θ if sin θ =− 0 , 61.
(b) Hence determine values of θ∈ [0◦;720◦]. - (a) Solve for A if sin(A + 20◦) = 0, 53
(b) Write down the values of A∈ [0◦;360◦] - (a) Solve for x if cos(x + 30◦) = 0, 32
(b) Write down the values of x∈ [− 180 ◦;360◦] - (a) Solve for θ if sin^2 (θ) + 0,5sin θ = 0
(b) Write down the values of θ∈ [0◦;360◦]
More practice video solutions or help at http://www.everythingmaths.co.za
(1.) 014n (2.) 014p (3.) 014q (4.) 014r (5.) 014s (6.) 014t
(7.) 014u