1001 Algebra Problems.PDF

(Marvins-Underground-K-12) #1

  1. d.Note that (2F)(–2E) = -4FE. Since the inner
    dimensions ofFand Edo not match, this
    product is not defined. As such, the entire
    computation is not well-defined.


Set 55 (Page 130)



  1. d.

  2. c.

  3. a.

  4. d.

  5. d.

  6. b.

  7. c.

  8. a.

  9. c.

  10. c.

  11. b.

  12. b.

  13. a.

  14. a.

  15. c.

  16. d.


Set 56 (Page 131)


  1. d.First, extract the coefficients from the variable
    terms on the left sides of the equations to form
    a 2 2 coefficient matrix. Multiplying this by





x
yand identifying the right side as a 2^1
constant matrix, we can rewrite the system

as the following matrix

equation:


  1. a.Extract the coefficients from the variable
    terms on the left sides of the equations to form
    a 2 2 coefficient matrix. Multiplying this
    by xyand identifying the right side as a 2 1
    constant matrix, we can rewrite the system


as the following matrix equation:


  1. b.Begin by extracting the coefficients from
    the variable terms on the left sides of the equa-
    tions to form a 2 2 coefficient matrix. Multi-
    plying this by xyand identifying the right side
    as a 2 1 constant matrix, we can rewrite the


system as the following matrix

equation:

x
y

1


2


2


3


4


>>>HH H= 2


xy 24
23 2xy

+=


+=


*


x
y

a
b

1


0


0


>>> 1 HH H=


xa
yb

=


=


*


x
y

3


1


7


5


2


8



>>>HH H=


37 2xy
xy 58

–+ =


* +=


det>^0420 H==()() ()()00 42–– 8

det^1 ()()()()
1

1


0


– 10 1 1 1



– ==–––––


> H


det^3 ()( ) ()( )
9

2


6


– 36 92 0



> H==–– –


det^3 ()() ()()
3

2


2


> H==32 32 0–


det^1 ()()()()
2

0


2


– 11 20 1



> H==–––


det^0 ()()()()
2

1


1


01 21 2


––


> H==–––


det^2 ( )() ( )()
12

0


3


– 23 120 6



> H==––– –


det^3 ()( ) ()( )
1

1


2


– 32 11 5



> H==–– – –


det^1 ()( ) ()( )
0

4


25


> – H==125 0 4 25––


det^3 ( )() ()()
4

4


2


>– H==––32 44 –^14


det^6 ()() ()()
2

3


1


> H==61 23 0–


det^1 ()()()()
2

2


4


– 14 22 0



> H==–––


det^2 ()() ()()
1

21 13 1


1


(^3) ==––



H
det^1 ()() ()()
2



2


3


> H==13 22––^1


det a ()() ()()
b

ab ab
0

(^0) ==– 00



H
det^3 ( )() ()()
1



7


5


>– H==––35 17 –^22


ANSWERS & EXPLANATIONS–
Free download pdf