- d.Note that (2F)(–2E) = -4FE. Since the inner
dimensions ofFand Edo not match, this
product is not defined. As such, the entire
computation is not well-defined.
Set 55 (Page 130)
- d.
- c.
- a.
- d.
- d.
- b.
- c.
- a.
- c.
- c.
- b.
- b.
- a.
- a.
- c.
- d.
Set 56 (Page 131)
- d.First, extract the coefficients from the variable
terms on the left sides of the equations to form
a 2 2 coefficient matrix. Multiplying this by
x
yand identifying the right side as a 2^1
constant matrix, we can rewrite the system
as the following matrix
equation:
- a.Extract the coefficients from the variable
terms on the left sides of the equations to form
a 2 2 coefficient matrix. Multiplying this
by xyand identifying the right side as a 2 1
constant matrix, we can rewrite the system
as the following matrix equation:
- b.Begin by extracting the coefficients from
the variable terms on the left sides of the equa-
tions to form a 2 2 coefficient matrix. Multi-
plying this by xyand identifying the right side
as a 2 1 constant matrix, we can rewrite the
system as the following matrix
equation:
x
y
1
2
2
3
4
>>>HH H= 2
xy 24
23 2xy
+=
+=
*
x
y
a
b
1
0
0
>>> 1 HH H=
xa
yb
=
=
*
x
y
3
1
7
5
2
8
–
>>>HH H=
37 2xy
xy 58
–+ =
* +=
det>^0420 H==()() ()()00 42–– 8
det^1 ()()()()
1
1
0
– 10 1 1 1
–
– ==–––––
> H
det^3 ()( ) ()( )
9
2
6
– 36 92 0
–
> H==–– –
det^3 ()() ()()
3
2
2
> H==32 32 0–
det^1 ()()()()
2
0
2
– 11 20 1
–
> H==–––
det^0 ()()()()
2
1
1
01 21 2
––
> H==–––
det^2 ( )() ( )()
12
0
3
– 23 120 6
–
> H==––– –
det^3 ()( ) ()( )
1
1
2
– 32 11 5
–
> H==–– – –
det^1 ()( ) ()( )
0
4
25
> – H==125 0 4 25––
det^3 ( )() ()()
4
4
2
>– H==––32 44 –^14
det^6 ()() ()()
2
3
1
> H==61 23 0–
det^1 ()()()()
2
2
4
– 14 22 0
–
> H==–––
det^2 ()() ()()
1
21 13 1
1
(^3) ==––
H
det^1 ()() ()()
2
2
3
> H==13 22––^1
det a ()() ()()
b
ab ab
0
(^0) ==– 00
H
det^3 ( )() ()()
1
7
5
>– H==––35 17 –^22
ANSWERS & EXPLANATIONS–