- d.Note that (2F)(–2E) = -4FE. Since the inner
dimensions ofFand Edo not match, this
product is not defined. As such, the entire
computation is not well-defined.
Set 55 (Page 130)
- d.
- c.
- a.
- d.
- d.
- b.
- c.
- a.
- c.
- c.
- b.
- b.
- a.
- a.
- c.
- d.
Set 56 (Page 131)- d.First, extract the coefficients from the variable
terms on the left sides of the equations to form
a 2 2 coefficient matrix. Multiplying this by
x
yand identifying the right side as a 2^1
constant matrix, we can rewrite the systemas the following matrixequation:- a.Extract the coefficients from the variable
terms on the left sides of the equations to form
a 2 2 coefficient matrix. Multiplying this
by xyand identifying the right side as a 2 1
constant matrix, we can rewrite the system
as the following matrix equation:- b.Begin by extracting the coefficients from
the variable terms on the left sides of the equa-
tions to form a 2 2 coefficient matrix. Multi-
plying this by xyand identifying the right side
as a 2 1 constant matrix, we can rewrite the
system as the following matrixequation:x
y1
2
2
3
4
>>>HH H= 2
xy 24
23 2xy+=
+=
*
x
ya
b1
0
0
>>> 1 HH H=
xa
yb=
=
*
x
y3
1
7
5
2
8
–
>>>HH H=
37 2xy
xy 58–+ =
* +=
det>^0420 H==()() ()()00 42–– 8det^1 ()()()()
11
0
– 10 1 1 1
–
– ==–––––
> H
det^3 ()( ) ()( )
92
6
– 36 92 0
–
> H==–– –
det^3 ()() ()()
32
2
> H==32 32 0–
det^1 ()()()()
20
2
– 11 20 1
–
> H==–––
det^0 ()()()()
21
1
01 21 2
––
> H==–––
det^2 ( )() ( )()
120
3
– 23 120 6
–
> H==––– –
det^3 ()( ) ()( )
11
2
– 32 11 5
–
> H==–– – –
det^1 ()( ) ()( )
04
25
> – H==125 0 4 25––
det^3 ( )() ()()
44
2
>– H==––32 44 –^14
det^6 ()() ()()
23
1
> H==61 23 0–
det^1 ()()()()
22
4
– 14 22 0
–
> H==–––
det^2 ()() ()()
121 13 1
1
(^3) ==––
H
det^1 ()() ()()
2
2
3
> H==13 22––^1
det a ()() ()()
bab ab
0(^0) ==– 00
H
det^3 ( )() ()()
1
7
5
>– H==––35 17 –^22
ANSWERS & EXPLANATIONS–