MA 3972-MA-Book April 11, 2018 14:46196 STEP 4. Review the Knowledge You Need to Score High
- (See Figure 9.6-7.)
xxRiver(200 – 2 x)
Figure 9.6-7
Step 1: Area:
A=x(200− 2 x)= 200 x− 2 x^2
with 0≤x≤100.
Step 2: A′(x)= 200 − 4 x
Step 3: SetA′(x)= 0 ⇒ 200 − 4 x=0;
x=50.
Step 4: Apply the Second Derivative Test:
A′′(x)=−4; thus atx=50, the
area is a relative maximum.
A(50)=5000 m^2.
Step 5: Check the endpoints.
A(0)=0 andA(100)=0;
therefore atx=50, the area is the
absolute maximum and 5000 m^2
is the maximum area.
Part B Calculators are allowed.- Step 1: Lethbe the height of the trough
and 4 be a side of one of the two
equilateral triangles. Thus, in a
30---60 right triangle,h= 2
√
3.
Step 2: Volume:
V=(area of the triangle)· 10=[
1
2
(h)(
2
√
3h)]
10 =10
√
3h^2.Step 3: Differentiate with respect tot.
dV
dt=
(
10
√
3)
(2)h
dh
dtStep 4: Substitute known values:1 =20
√
3(2)
dh
dt;
dh
dt=
√
3
40m/min.The water level is rising√
3
40m/min when the water level
is 2 m high.- (See Figure 9.6-8.)
3000 mSZθCameraFigure 9.6-8Step 1: tanθ=S/ 3000
Step 2: Differentiate with respect tot.sec^2 θ
dθ
dt=
1
3000
dS
dt;
dθ
dt=
1
3000
(
1
sec^2 θ)
dS
dt=1
3000
(
1
sec^2 θ)
(200t)Step 3: Att=5;S=100(5)^2 =2500;
Thus,Z^2 =(3000)^2 +(2500)^2 =
15, 250, 000. Therefore,
Z=± 500√
61, sinceZ>0,
Z= 500√- Substitute known
values into the equation:
dθ
dt
=
1
3000
⎛
⎜⎜
⎜⎝1
500
√
61
3000⎞
⎟⎟
⎟⎠2(1000),
since secθ=