MA 3972-MA-Book April 11, 2018 14:46
196 STEP 4. Review the Knowledge You Need to Score High
- (See Figure 9.6-7.)
xx
River
(200 – 2 x)
Figure 9.6-7
Step 1: Area:
A=x(200− 2 x)= 200 x− 2 x^2
with 0≤x≤100.
Step 2: A′(x)= 200 − 4 x
Step 3: SetA′(x)= 0 ⇒ 200 − 4 x=0;
x=50.
Step 4: Apply the Second Derivative Test:
A′′(x)=−4; thus atx=50, the
area is a relative maximum.
A(50)=5000 m^2.
Step 5: Check the endpoints.
A(0)=0 andA(100)=0;
therefore atx=50, the area is the
absolute maximum and 5000 m^2
is the maximum area.
Part B Calculators are allowed.
- Step 1: Lethbe the height of the trough
and 4 be a side of one of the two
equilateral triangles. Thus, in a
30---60 right triangle,h= 2
√
3.
Step 2: Volume:
V=(area of the triangle)· 10
=
[
1
2
(h)
(
2
√
3
h
)]
10 =
10
√
3
h^2.
Step 3: Differentiate with respect tot.
dV
dt
=
(
10
√
3
)
(2)h
dh
dt
Step 4: Substitute known values:
1 =
20
√
3
(2)
dh
dt
;
dh
dt
=
√
3
40
m/min.
The water level is rising√
3
40
m/min when the water level
is 2 m high.
- (See Figure 9.6-8.)
3000 m
S
Z
θ
Camera
Figure 9.6-8
Step 1: tanθ=S/ 3000
Step 2: Differentiate with respect tot.
sec^2 θ
dθ
dt
=
1
3000
dS
dt
;
dθ
dt
=
1
3000
(
1
sec^2 θ
)
dS
dt
=
1
3000
(
1
sec^2 θ
)
(200t)
Step 3: Att=5;S=100(5)^2 =2500;
Thus,Z^2 =(3000)^2 +(2500)^2 =
15, 250, 000. Therefore,
Z=± 500
√
61, sinceZ>0,
Z= 500
√
- Substitute known
values into the equation:
dθ
dt
=
1
3000
⎛
⎜⎜
⎜⎝
1
500
√
61
3000
⎞
⎟⎟
⎟⎠
2
(1000),
since secθ=