5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 14:46

196 STEP 4. Review the Knowledge You Need to Score High



  1. (See Figure 9.6-7.)


xx

River

(200 – 2 x)
Figure 9.6-7
Step 1: Area:
A=x(200− 2 x)= 200 x− 2 x^2
with 0≤x≤100.
Step 2: A′(x)= 200 − 4 x
Step 3: SetA′(x)= 0 ⇒ 200 − 4 x=0;
x=50.
Step 4: Apply the Second Derivative Test:
A′′(x)=−4; thus atx=50, the
area is a relative maximum.
A(50)=5000 m^2.
Step 5: Check the endpoints.
A(0)=0 andA(100)=0;
therefore atx=50, the area is the
absolute maximum and 5000 m^2
is the maximum area.
Part B Calculators are allowed.


  1. Step 1: Lethbe the height of the trough
    and 4 be a side of one of the two
    equilateral triangles. Thus, in a
    30---60 right triangle,h= 2



3.
Step 2: Volume:
V=(area of the triangle)· 10

=

[
1
2
(h)

(
2

3

h

)]
10 =

10



3

h^2.

Step 3: Differentiate with respect tot.
dV
dt

=


(
10

3

)
(2)h
dh
dt

Step 4: Substitute known values:

1 =

20



3

(2)


dh
dt

;


dh
dt

=



3
40

m/min.

The water level is rising√
3
40

m/min when the water level
is 2 m high.


  1. (See Figure 9.6-8.)


3000 m

S

Z

θ

Camera

Figure 9.6-8

Step 1: tanθ=S/ 3000
Step 2: Differentiate with respect tot.

sec^2 θ

dt

=


1


3000


dS
dt

;



dt

=


1


3000


(
1
sec^2 θ

)
dS
dt

=

1


3000


(
1
sec^2 θ

)
(200t)

Step 3: Att=5;S=100(5)^2 =2500;
Thus,Z^2 =(3000)^2 +(2500)^2 =
15, 250, 000. Therefore,
Z=± 500


61, sinceZ>0,
Z= 500



  1. Substitute known
    values into the equation:

    dt


=


1


3000



⎜⎜
⎜⎝

1


500



61
3000


⎟⎟
⎟⎠

2

(1000),


since secθ=

Z


3000


.

Free download pdf