5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 14:46

Applications of Derivatives 195

Thus atx=

5


3


is a relative
maximum.
Step 5: Check the endpoints.
Atx=0,V=0 and atx=4,
V=0. Therefore, atx=

5


3


,Vis
the absolute maximum.


  1. (See Figure 9.6-6.)


Figure 9.6-6

Step 1: Distance Formula:

Z=



(x− 2 )^2 +

(
y−

(

1


2


)) 2

=



(x− 2 )^2 +

(
−x^2 +

1


2


) 2

=



x^2 − 4 x+ 4 +x^4 −x^2 +

1


4


=



x^4 − 4 x+

17


4


Step 2: LetS=Z^2 , sinceSandZhave
the same maximums and
minimums.
S=x^4 − 4 x+

17


4


;


dS
dx
= 4 x^3 − 4

Step 3: Set
dS
dx
=0;x=1 and
dS
dx
is
defined for all real numbers.

Step 4: Apply the Second Derivative Test:
d^2 S
dx^2

= 12 x^2 and
d^2 S
dx^2

∣∣
∣∣
x= 1

=12.


Thus atx=1,Zhas a minimum,
and since it is the only relative
extremum, it is the absolute
minimum.
Step 5: Atx=1,

Z=


( 1 )^4 −4(1)+

17


4


=



5
4

.


Therefore, the shortest distance is

5
4

.



  1. Step 1: Average Cost:


C=
C(x)
x

=


3 x^2 + 5 x+ 12
x
= 3 x+ 5 +

12


x

.


Step 2:
dC
dx

= 3 − 12 x−^2 = 3 −

12


x^2

Step 3: Set
dC
dx

= 0 ⇒ 3 −


12


x^2

= 0 ⇒


3 =


12


x^2
⇒x=±2. Sincex>0,x= 2

andC(2)= 17.
dC
dx
is undefined at
x=0, which is not in the domain.
Step 4: Apply the Second Derivative Test:
d^2 C
dx^2

=


24


x^3
and
d^2 C
dx^2

∣∣

∣x= 2 =^3
Thus atx=2, the average cost is a
minimum.
Free download pdf