5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 14:46

198 STEP 4. Review the Knowledge You Need to Score High


Step 2: Enter:y 1 =

2500


x
+. 02 +. 004 ∗x

Step 3: Use the [Minimum] function in
the calculator and obtainx= 790 .6.

Step 4: Verify the result with the First
Derivative Test. Entery 2 =
d(2500/x+. 02 +. 004 x,x);
Use the [Zero] function and

obtainx= 790 .6. Thus
dC
dx

=0;


atx= 790 .6.
Apply the First Derivative Test:
f′ – 0+

f decr.
rel. min.

incr.

0 790.6

Thus the minimum average cost
per unit occurs atx= 790 .6. (The
graph of the average cost function
is shown in Figure 9.6-10.)

Figure 9.6-10


  1. (See Figure 9.6-11.)


(x, y)

y

2


  • 2

  • 55 x x


y

Figure 9.6-11

Step 1: AreaA=(2x)(2y); 0≤x≤5 and
0 ≤y≤ 2.
Step 2: 4x^2 + 25 y^2 =100;
25 y^2 = 100 − 4 x^2.

y^2 =

100 − 4 x^2
25
⇒y=±


100 − 4 x^2
25

Sincey≥ 0

y=


100 − 4 x^2
25

=



100 − 4 x^2
5

.


Step 3: A=(2x)

(
2
5

)(√
100 − 4 x^2

)

=


4 x
5


100 − 4 x^2

Step 4: Entery 1 =
4 x
5


100 − 4 x^2
Use the [Maximum] function and
obtainx= 3 .536 andy 1 =20.

Step 5: Verify the result with the First
Derivative Test.
Enter

y 2 =d

(
4 x
5


100 − 4 x^2 ,x

)
.

Use the [Zero] function and
obtainx= 3 .536.
Note that:

f′

f incr.
rel. max.

decr.

0 3.536

+ 0 –

The functionfhas only one
relative extremum. Thus, it is the
absolute extremum. Therefore, at
x= 3 .536, the area is 20 and the
area is the absolute maxima.
Free download pdf