MA 3972-MA-Book May 8, 2018 13:52
242 STEP 4. Review the Knowledge You Need to Score High
Answer:Rewrite as
∫
x(x^2 −1)^1 /^2 dx. Letu=x^2 −1.
Thus,
du
2
=xdx⇒
1
2
∫
u^1 /^2 du=
1 u^3 /^2
23 /^2
+C=
1
3
(x^2 −1)^3 /^2 +C.
- Evaluate
∫
sinxdx.
Answer:−cosx+C.
- Evaluate
∫
cos(2x)dx.
Answer:Letu= 2 xand obtain
1
2
sin 2x+C.
- Evaluate
∫
lnx
x
dx.
Answer:Letu=lnx;du=
1
x
dxand obtain
(lnx)^2
2
+C.
- Evaluate
∫
xex^2 dx.
Answer:Letu=x^2 ;
du
2
=xdxand obtain
ex^2
2
+C.
11.4 Practice Problems
Evaluate the following integrals in problems
1 to 20. No calculators are allowed. (However,
you may use calculators to check your
results.)
1.
∫
(x^5 + 3 x^2 −x+1)dx
2.
∫ (√
x−
1
x^2
)
dx
3.
∫
x^3 (x^4 −10)^5 dx
4.
∫
x^3
√
x^2 + 1 dx
5.
∫
x^2 + 5
√
x− 1
dx
6.
∫
tan
(
x
2
)
dx
7.
∫
xcsc^2 (x^2 )dx
8.
∫
sinx
cos^3 x
dx
9.
∫
1
x^2 + 2 x+ 10
dx
10.
∫
1
x^2
sec^2
(
1
x
)
dx
11.
∫
(e^2 x)(e^4 x)dx
12.
∫
1
xlnx
dx
13.
∫
ln(e^5 x+^1 )dx
14.
∫
e^4 x− 1
ex
dx
15.
∫
(9−x^2 )
√
xdx
16.
∫ √
x
(
1 +x^3 /^2
) 4
dx