MA 3972-MA-Book May 8, 2018 13:52
246 STEP 4. Review the Knowledge You Need to Score High
- Sincef(x) is the antiderivative of
1
x
,
f(x)=
∫
1
x
d=ln|x|+C.
Givenf(1)=5; thus, ln (1)+C= 5
⇒ 0 +C=5orC=5.
Thus,f(x)=ln|x|+5 and
f(e)=ln (e)+ 5 = 1 + 5 =6.
11.7 Solutions to Cumulative Review Problems
- (a) Att=4, speed is 5 which is the
greatest on 0≤t≤10.
(b) The particle is moving to the right
when 6<t<10. - V=
4
3
πr^3 ;
dV
dt
=
(
4
3
)
(3)πr^2
dr
dt
= 4 πr^2
dr
dt
If
dV
dt
= 100
dr
dt
, then 100
dr
dt
= 4 πr^2
dr
dt
⇒ 100.
= 4 πr^2 orr=±
√
25
π
=±
5
√
π
.
Sincer≥0,r=
5
√
π
meters.
- Letu=lnx;du=
1
x
dx.
Rewrite:
∫
u^3 du=
u^4
4
+C=
(lnx)^4
4
+C
=
ln^4 (x)
4
+C.
- Label given points as A, B, C, D, and E.
Sincef′′(x)> 0 ⇒ f is concave upward
for allxin the interval [0, 2].
Thus,mBC<f′(x)<mCD
mBC= 1 .5 andmCD= 2 .5.
Therefore, 1. 5 <f′(1)< 2 .5, choice (c).
(See Figure 11.7-1.)
Tangent
0 0.5 1 1.5 2
A B C
D
f E
y
x
Not to scale
Figure 11.7-1
- (a) f′′is decreasing on [1, 6)⇒
f′′′< 0 ⇒ f′is concave downward
on [1, 6) andf′′is increasing on (6, 8]
⇒f′is concave upward on (6, 8].
Thus, atx=6,f′has a change of
concavity. Sincef′′exists atx=6,
which implies there is a tangent to the
curve off′atx=6,f′has a point of
inflection atx=6.
(b) f′′>0 on [1, 4]⇒f′is increasing
and f′′<0 on (4, 8]⇒ f′is
decreasing. Thus atx=4,f′has a
relative maximum atx=4. There is no
relative minimum.
(c) f′′is increasing on [6, 8]⇒ f′> 0
⇒f′is concave upward on [6, 8].