5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 8, 2018 13:52

246 STEP 4. Review the Knowledge You Need to Score High



  1. Sincef(x) is the antiderivative of


1


x

,


f(x)=


1
x
d=ln|x|+C.

Givenf(1)=5; thus, ln (1)+C= 5
⇒ 0 +C=5orC=5.
Thus,f(x)=ln|x|+5 and
f(e)=ln (e)+ 5 = 1 + 5 =6.

11.7 Solutions to Cumulative Review Problems



  1. (a) Att=4, speed is 5 which is the
    greatest on 0≤t≤10.
    (b) The particle is moving to the right
    when 6<t<10.

  2. V=


4


3


πr^3 ;
dV
dt

=


(
4
3

)
(3)πr^2
dr
dt
= 4 πr^2
dr
dt

If
dV
dt

= 100


dr
dt
, then 100
dr
dt
= 4 πr^2
dr
dt

⇒ 100.


= 4 πr^2 orr=±


25
π


5



π

.


Sincer≥0,r=

5



π
meters.


  1. Letu=lnx;du=


1


x
dx.

Rewrite:


u^3 du=
u^4
4

+C=


(lnx)^4
4

+C


=


ln^4 (x)
4

+C.



  1. Label given points as A, B, C, D, and E.
    Sincef′′(x)> 0 ⇒ f is concave upward
    for allxin the interval [0, 2].
    Thus,mBC<f′(x)<mCD
    mBC= 1 .5 andmCD= 2 .5.
    Therefore, 1. 5 <f′(1)< 2 .5, choice (c).
    (See Figure 11.7-1.)


Tangent

0 0.5 1 1.5 2

A B C

D

f E

y

x

Not to scale

Figure 11.7-1


  1. (a) f′′is decreasing on [1, 6)⇒
    f′′′< 0 ⇒ f′is concave downward
    on [1, 6) andf′′is increasing on (6, 8]
    ⇒f′is concave upward on (6, 8].
    Thus, atx=6,f′has a change of
    concavity. Sincef′′exists atx=6,
    which implies there is a tangent to the
    curve off′atx=6,f′has a point of
    inflection atx=6.
    (b) f′′>0 on [1, 4]⇒f′is increasing
    and f′′<0 on (4, 8]⇒ f′is
    decreasing. Thus atx=4,f′has a
    relative maximum atx=4. There is no
    relative minimum.
    (c) f′′is increasing on [6, 8]⇒ f′> 0
    ⇒f′is concave upward on [6, 8].

Free download pdf