MA 3972-MA-Book April 11, 2018 15:57
Def inite Integrals 253
The remaining properties are best illustrated in terms of the area under the curve of the
function, as discussed in the next section.
TIP • Do not forget that
∫− 3
0
f(x)dx=−
∫ 0
− 3
f(x)dx.
12.2 Fundamental Theorems of Calculus
Main Concepts:First Fundamental Theorem of Calculus, Second Fundamental
Theorem of Calculus
First Fundamental Theorem of Calculus
Iff is continuous on [a,b] andFis an antiderivative of fon [a,b], then
∫b
a
f(x)dx=F(b)−F(a).
Note:F(b)−F(a) is often denoted asF(x)
]b
a.
Example 1
Evaluate
∫ 2
0
(
4 x^3 +x− 1
)
dx.
∫ 2
0
(
4 x^3 +x− 1
)
dx=
4 x^4
4
+
x^2
2
−x
] 2
0
=x^4 +
x^2
2
−x
] 2
0
=
(
24 +
22
2
− 2
)
−(0)= 16
Example 2
Evaluate
∫π
−π
sinxdx.
∫π
−π
sinxdx=−cosx
]π
−π
=[−cosπ]−[−cos(−π)]
=[−(−1)]−[−(−1)]=(1)−(1)= 0
Example 3
If
∫k
− 2
(4x+1)dx=30,k>0, findk.
∫k
− 2
(4x+1)dx= 2 x^2 +x
]k
− 2 =
(
2 k^2 +k
)
−
(
2(−2)^2 − 2
)
= 2 k^2 +k− 6