MA 3972-MA-Book April 11, 2018 15:57
Def inite Integrals 255
Example 1
Evaluate
∫π
π/ 4
cos(2t)dt.
Letu= 2 t;du= 2 dtor
du
2
=dt.
∫
cos(2t)dt=
∫
cosu
du
2
=
1
2
∫
cosudu
=
1
2
sinu+C=
1
2
sin(2t)+C
∫x
π/ 4
cos(2t)dt=
1
2
sin( 2 t)
]x
π/ 4
=
1
2
sin(2x)−
1
2
sin
(
2
(
π
4
))
=
1
2
sin(2x)−
1
2
sin
(
π
2
)
=
1
2
sin(2x)−
1
2
Example 2
Ifh(x)=
∫ x
3
√
t+ 1 dt, findh′(8).
h′(x)=
√
x+1;h′(8)=
√
8 + 1 = 3
Example 3
Find
dy
dx
;ify=
∫ 2 x
1
1
t^3
dt.
Letu= 2 x; then
dy
dx
= 2.
Rewrite:y=
∫u
1
1
t^3
dt.
dy
dx
=
dy
du
·
du
dx
=
1
u^3
·(2)=
1
(2x)^3
· 2 =
1
4 x^3
Example 4
Find
dy
dx
;ify=
∫ 1
x^2
sintdt.
Rewrite:y=−
∫x 2
1
sintdt.