MA 3972-MA-Book April 11, 2018 16:1
Areas and Volumes 273
(a) Evaluate:p(0),p(1),p(4).
(b) Evaluate:p(5),p(7),p(8).
(c) At what value oftdoesphave a maximum value?
(d) On what interval(s) ispdecreasing?
(e) Draw a sketch of the graph ofp.
Solution:
(a) p(0)=
∫ 0
0
f(t)dt= 0
p(1)=
∫ 1
0
f(t)dt=
(1)(4)
2
= 2
p(4)=
∫ 4
0
f(t)dt=
1
2
( 2 + 4 )( 4 )= 12
(Note:f(t) forms a trapezoid fromt=0tot=4.)
(b) p(5)=
∫ 5
0
f(t)dt=
∫ 4
0
f(t)dt+
∫ 5
4
f(t)dt
= 12 −
(1)(4)
2
= 10
p(7)=
∫ 7
0
f(t)dt=
∫ 4
0
f(t)dt+
∫ 5
4
f(t)dt+
∫ 7
5
f(t)dt
= 12 − 2 −(2)(4)= 2
p(8)=
∫ 8
0
f(t)dt=
∫ 4
0
f(t)dt+
∫ 8
4
f(t)dt
= 12 − 12 = 0
(c) Sincef≥0 on the interval [0, 4],pattains a maximum att=4.
(d) Sincef(t) is below thex-axis fromt=4tot=8, ifx>4,
∫x
0
f(t)dt=
∫ 4
0
f(t)dt+
∫ x
4
f(t)dtwhere
∫x
4
f(t)dt< 0.
Thus,pis decreasing on the interval (4, 8).
(e) p(x)=
∫x
0
f(t)dt. See Figure 13.1-5 for a sketch.
x 0 1 2 3 4 5 6 7 8
p(x) 0 2 6 10 12 10 6 2 0