MA 3972-MA-Book April 11, 2018 16:1
Areas and Volumes 277
Or, find the area of each rectangle:
Area of RectI=(f(0))Δx 1 =(1)
(
1
2
)
=
1
2
.
Area of RectII= f(0.5)Δx 2 =((.5)^2 +1)
(
1
2
)
= 0. 625.
Area of RectIII= f(1)Δx 3 =(1^2 +1)
(
1
2
)
= 1.
Area of RectIV= f(1.5)Δx 4 =(1. 52 +1)
(
1
2
)
= 1. 625.
Area of (RectI+RectII+RectIII+RectIV)= 3. 75.
Thus, the approximate area under the curve off(x) is 3.75.
Example 2
Find the approximate area under the curve off(x)=
√
xfromx=4tox=9 using 5 right-
endpoint rectangles. (See Figure 13.2-3.)
0
IIIIII IVV
x
y f(x) = x
456789
Figure 13.2-3
LetΔxibe the length of theith rectangle. The lengthΔxi=
9 − 4
5
=1;xi= 4 +(1)i=
4 +i.
Area of RectI= f(x 1 )Δx 1 = f(5)(1)=
√
5.
Area of RectII= f(x 2 )Δx 2 = f(6)(1)=
√
6.
Area of RectIII= f(x 3 )Δx 3 = f(7)(1)=
√
7.
Area of RectIV= f(x 4 )Δx 4 = f(8)(1)=
√
8.
Area of Rectv= f(x 5 )Δx 5 = f(9)(1)=
√
9 = 3.
∑^5
i= 1
(Area of RectI)=
√
5 +
√
6 +
√
7 +
√
8 + 3 = 13. 160.