MA 3972-MA-Book April 11, 2018 16:1
302 STEP 4. Review the Knowledge You Need to Score High
y
g(t)
t
(^0321)
- 1
1
Figure 13.5-1
- The function fis continuous on [1, 5] and f >0, and selected values off are given
below.
x 1 2 3 4 5
f(x) 2 4 6 8 10
Using 2 midpoint rectangles, approximate the area under the curve offforx=1to
x=5.
Answer:Midpoints arex=2 andx=4, and the width of each rectangle
=
5 − 1
2
=2.
Area≈ Area of Rect 1 + Area of Rect 2 ≈4(2)+8(2)≈24.
- Set up an integral to find the area of the regions bounded by the graphs ofy=x^3 and
y=x. Do not evaluate the integral.
Answer:Graphs intersect atx=−1 andx=1. (See Figure 13.5-2.)
Area =
∫ 0
− 1
(
x^3 −x
)
dx+
∫ 1
0
(
x−x^3
)
dx.
Or, using symmetry, Area= 2
∫ 1
0
(
x−x^3
)
dx.
(–1, –1)
0
(1, 1)
y = x
x
y
y = x^3
Figure 13.5-2