5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:1

Areas and Volumes 309

Using the Disc Method:

V=π

∫ 1

− 1

(y^2 +1)^2 dy


∫ 1

− 1

(y^4 + 2 y^2 +1)dy


[
y^5
5

+


2 y^3
3
+y

] 1

− 1


[(
15
5

+


2(1)^3


3


+ 1


)


(
(−1)^5
5

+


2(−1)^3


3


+(−1)


)]


(
28
15

+


28


15


)
=
56 π
15

Note that you can use the symmetry of
the region and find the volume by
2 π

∫ 1

0

(y^2 +1)^2 dy.


  1. Volume of solid by revolvingR:


VR=


∫ 4

0

π(3x)^2 dx=π

∫ 4

0

9 x^2 dx

=π[3x^2 ]^40 = 192 π

Set

∫ 4

0

π(3x)^2 dx=
192 π
2
⇒ 3 a^3 π= 96 π
a^3 = 32
a=(32)^1 /^3 =2(2)^2 /^3

You can verify your result by evaluating
∫2(2)^2 /^3

0

π( 3 x)^2 dx.The result is 96π.

Part B Calculators are allowed.


  1. (See Figure 13.8-10.)
    y
    y = x^3 y = x 2


0 1 x

Figure 13.8-10

Step 1: Using the Washer Method:
Points of Intersection: Set
x^3 =x^2 ⇒x^3 −x^2 = 0 ⇒
x^2 (x−1)=0orx=1.
Outer radius=x^2 ;
Inner radius=x^3.

Step 2: V=π

∫ 1

0

((
x^2

) 2

(
x^3

) 2 )
dx


∫ 1

0

(x^4 −x^6 )dx

Step 3: Enter


(π(x∧ 4 −x∧6),x,0,1)

and obtain
2 π
35

.



  1. (See Figure 13.8-11.)


y

x

0

2

2


  • 2

    • 2




Figure 13.8-11
Free download pdf