MA 3972-MA-Book April 11, 2018 16:5
320 STEP 4. Review the Knowledge You Need to Score High
(a) Displacement=
∫t 2
t 1
v(t)dt
=
∫ 6
0
(t^2 + 3 t−10)dt=
t^3
3
+
3 t^2
2
− 10 t
] 6
0
= 66.
(b) Total Distance Traveled=
∫t 2
t 1
∣∣
v(t)
∣∣
dt
=
∫ 6
0
|t^2 + 3 t− 10 |dt.
Lett^2 + 3 t− 10 = 0 ⇒(t+5) (t−2)= 0 ⇒t=−5ort= 2
|t^2 + 3 t− 10 |=
{
−
(
t^2 + 3 t− 10
)
if 0≤t≤ 2
t^2 + 3 t− 10 ift> 2
∫ 6
0
|t^2 + 3 t− 10 |dt=
∫ 2
0
−(t^2 + 3 t−10)dt+
∫ 6
2
(t^2 + 3 t−10)dt
=
[
−t^3
3
−
3 t^2
2
+ 10 t
] 2
0
+
[
t^3
3
+
3 t^2
2
− 10 t
] 6
2
=
34
3
+
232
3
=
266
3
≈ 88. 667.
Thus, the total distance traveled by the particle is
266
3
or approximately 88.667.
Example 3
The velocity function of a moving particle on a coordinate line isv(t)=t^3 − 6 t^2 + 11 t−6.
Using a calculator, find (a) the displacement by the particle during 1≤t≤4 and (b) the
total distance traveled by the particle during 1≤t≤4.
(a) Displacement=
∫t 2
t 1
v(t)dt
=
∫ 4
1
(t^3 − 6 t^2 + 11 t−6)dt.
Enter
∫ (
x^3 − 6 x^2 + 11 x−6,x,1,4
)
and obtain
9
4
.
(b) Total Distance Traveled=
∫t 2
t 1
∣
∣v(t)
∣
∣dt.
Entery 1 =x∧ 3 − 6 x∧ 2 + 11 x−6 and use the [Zero] function to obtainx-intercepts at
x=1, 2, 3.
|v(t)|=
{
v(t)if1≤t≤2 and 3≤t≤ 4
−v(t)if2<t < 3