MA 3972-MA-Book April 11, 2018 12:11
Take a Diagnostic Exam 29
dy
dx
=−ysin(xy)−xsin(xy)
dy
dx
dy
dx
+xsin(xy)
dy
dx
=−ysin(xy)
dy
dx
[1+xsin(xy)]=−ysin(xy)
dy
dx
=
−ysin(xy)
1 +xsin(xy)
Atx=0, y=cos(xy)=cos(0)
=1; (0, 1)
dy
dx
∣
∣∣
∣x=0,y= 1 =
−(1) sin(0)
1 +0 sin(0)
=
0
1
= 0.
Thus, the slope of the tangent atx=0is0.
- See the figure below.
v(t)=t^2 −t
Setv(t)= 0 ⇒t(t−1)= 0
⇒t=0ort= 1
a(t)=v′(t)= 2 t− 1.
Seta(t)= 0 ⇒ 2 t− 1 =0ort=
1
2
.
Sincev(t)<0 anda(t)>0on
(
1
2
,1
)
, the
speed of the particle is decreasing on
(
1
2
,1
)
.
[
(^012)
0
1
V(t) 0
a(t)
t
− − − − − − − − − − − − − − − − − − − − −
− − − − − − − − + + + + + + + + + + + + + + + + + + + + +
- +0
- v(t)=t
3
3
− 2 t^2 + 5
a(t)=v′(t)=t^2 − 4 t
See the figure below.
The graph indicates that for 0≤t≤6, the
maximum acceleration occurs at the endpoint
t=6.a(t)=t^2 − 4 tanda(6)= 62 −4(6)= 12.
- y=x^3 ,x≥0;
dy
dx
= 3 x^2
f′(x)= 12 ⇒
dy
dx
= 3 x^2 = 12
⇒x^2 = 4 ⇒x= 2
Slope of normal=negative reciprocal of slope
of tangent=−
1
12
.
Atx=2,y=x^3 = 23 =8; (2, 8)
y− 8 =−
1
12
(x−2).
Equation of normal line:⇒y=−
1
12
(x−2)+ 8
ory=−
1
12
x+
49
6
.
- f(x)=
lnx
x
; f′x=
(1/x)(x)−(1)lnx
x^2
=
1
x^2
−
lnx
x^2
y=−x^2 ;
dy
dx
=− 2 x
Perpendicular tangents
⇒(f′(x))
(
dy
dx
)
=− 1
⇒
((
1
x^2
)
−
lnx
x^2
)
(− 2 x)=− 1.
Using the [Solve] function on your calculator,
you obtainx≈ 1. 37015 ≈ 1 .370.