5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 12:11

Take a Diagnostic Exam 29

dy
dx
=−ysin(xy)−xsin(xy)
dy
dx
dy
dx
+xsin(xy)
dy
dx
=−ysin(xy)

dy
dx
[1+xsin(xy)]=−ysin(xy)

dy
dx

=


−ysin(xy)
1 +xsin(xy)
Atx=0, y=cos(xy)=cos(0)
=1; (0, 1)
dy
dx


∣∣
∣x=0,y= 1 =

−(1) sin(0)
1 +0 sin(0)

=


0


1


= 0.


Thus, the slope of the tangent atx=0is0.


  1. See the figure below.
    v(t)=t^2 −t
    Setv(t)= 0 ⇒t(t−1)= 0
    ⇒t=0ort= 1
    a(t)=v′(t)= 2 t− 1.


Seta(t)= 0 ⇒ 2 t− 1 =0ort=

1


2


.


Sincev(t)<0 anda(t)>0on

(
1
2

,1


)
, the

speed of the particle is decreasing on

(
1
2

,1


)
.

[

(^012)
0
1
V(t) 0
a(t)
t
− − − − − − − − − − − − − − − − − − − − −
− − − − − − − − + + + + + + + + + + + + + + + + + + + + +









        • +0









  1. v(t)=t


3
3
− 2 t^2 + 5

a(t)=v′(t)=t^2 − 4 t

See the figure below.
The graph indicates that for 0≤t≤6, the
maximum acceleration occurs at the endpoint
t=6.a(t)=t^2 − 4 tanda(6)= 62 −4(6)= 12.


  1. y=x^3 ,x≥0;


dy
dx
= 3 x^2

f′(x)= 12 ⇒
dy
dx
= 3 x^2 = 12

⇒x^2 = 4 ⇒x= 2

Slope of normal=negative reciprocal of slope
of tangent=−

1


12


.


Atx=2,y=x^3 = 23 =8; (2, 8)
y− 8 =−

1


12


(x−2).

Equation of normal line:⇒y=−

1


12


(x−2)+ 8

ory=−

1


12


x+

49


6


.



  1. f(x)=
    lnx
    x
    ; f′x=
    (1/x)(x)−(1)lnx
    x^2


=

1


x^2


lnx
x^2

y=−x^2 ;
dy
dx
=− 2 x

Perpendicular tangents

⇒(f′(x))

(
dy
dx

)
=− 1


((
1
x^2

)

lnx
x^2

)
(− 2 x)=− 1.

Using the [Solve] function on your calculator,
you obtainx≈ 1. 37015 ≈ 1 .370.
Free download pdf