MA 3972-MA-Book April 11, 2018 12:11Take a Diagnostic Exam 31KEY IDEAYou can check your answer by
evaluating∫− 2− 1(2x−3)dxand
∫ 5− 1(2x−3)dx.- h(x)=
∫ππ/ 2√
sintdt⇒h′(x)=√
sinxh′(π)=√
sinπ=√
0 = 0- Letu= 3 x;du= 3 dxor
du
3
=dx.
∫
g(3x)dx=∫
g(u)
du
3=
1
3
∫
g(u)du=
1
3
f(u)+c=1
3
f(3x)+c
∫ 20g(3x)dx=1
3
[f(3x)]^20=
1
3
f(6)−1
3
f(0)Thus, the correct choice is (A).36.∫xπsin(2t)dt=[
−cos(2t)
2]xπ=
−cos(2x)
2−
(
−
cos(2π)
2)=−
1
2
cos(2x)+1
2
37. I.
∫caf(x)dx=∫baf(x)dx+∫cbf(x)dxThe statement is true, since the upper and
lower limits of the integrals are in sequence,
i.e.,a→c=a→b→c.II.
∫baf(x)dx=∫caf(x)dx−∫bcf(x)dx=
∫caf(x)dx+∫cbf(x)dxThe statement is not always true.III.
∫cbf(x)dx=∫abf(x)dx−∫acf(x)dx=
∫abf(x)dx+∫caf(x)dxThe statement is true.
Thus, only statements I and III are true.- Sinceg(x)=
∫ xπ/ 22 sintdt, then
g′(x)=2 sinx.
Setg′(x)= 0 ⇒2 sinx= 0 ⇒x=πor 2π
g′′(x)=2 cosxandg′′(π)=2 cosπ=
−2 andg′′(2π)= 1.
Thusg has a local minimum atx= 2 π. You
can also approach the problem geometrically
by looking at the area under the curve. See the
figure below.+−+y = 2sint3 π 2 π
2
5 π
2
π π(^02)
− 2
2
y
t
Chapter 13
- Total distance=
∫ 40v(t)dt+∣∣
∣
∣∫ 64v(t)dt∣∣
∣
∣=
1
2
(4)(20)+
∣∣
∣∣^1
2(2)(−10)
∣∣
∣∣= 40 + 10 =50 feet