5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 12:11

Take a Diagnostic Exam 31

KEY IDEA

You can check your answer by
evaluating

∫− 2

− 1

(2x−3)dxand
∫ 5

− 1

(2x−3)dx.


  1. h(x)=


∫π

π/ 2


sintdt⇒h′(x)=


sinx

h′(π)=


sinπ=


0 = 0


  1. Letu= 3 x;du= 3 dxor
    du
    3


=dx.

g(3x)dx=


g(u)
du
3

=


1


3



g(u)du

=


1


3


f(u)+c=

1


3


f(3x)+c
∫ 2

0

g(3x)dx=

1


3


[f(3x)]^20

=


1


3


f(6)−

1


3


f(0)

Thus, the correct choice is (A).

36.

∫x

π

sin(2t)dt=

[
−cos(2t)
2

]x

π

=
−cos(2x)
2


(

cos(2π)
2

)

=−


1


2


cos(2x)+

1


2


37. I.


∫c

a

f(x)dx=

∫b

a

f(x)dx+

∫c

b

f(x)dx

The statement is true, since the upper and
lower limits of the integrals are in sequence,
i.e.,a→c=a→b→c.

II.


∫b

a

f(x)dx=

∫c

a

f(x)dx−

∫b

c

f(x)dx

=


∫c

a

f(x)dx+

∫c

b

f(x)dx

The statement is not always true.

III.


∫c

b

f(x)dx=

∫a

b

f(x)dx−

∫a

c

f(x)dx

=


∫a

b

f(x)dx+

∫c

a

f(x)dx

The statement is true.
Thus, only statements I and III are true.


  1. Sinceg(x)=


∫ x

π/ 2

2 sintdt, then
g′(x)=2 sinx.
Setg′(x)= 0 ⇒2 sinx= 0 ⇒x=πor 2π
g′′(x)=2 cosxandg′′(π)=2 cosπ=
−2 andg′′(2π)= 1.
Thusg has a local minimum atx= 2 π. You
can also approach the problem geometrically
by looking at the area under the curve. See the
figure below.

+


+

y = 2sint

3 π 2 π
2
5 π
2
π π

(^02)
− 2
2
y
t
Chapter 13



  1. Total distance=


∫ 4

0

v(t)dt+

∣∣


∫ 6

4

v(t)dt

∣∣


=


1


2


(4)(20)+


∣∣
∣∣^1
2

(2)(−10)


∣∣
∣∣

= 40 + 10 =50 feet
Free download pdf