MA 3972-MA-Book April 11, 2018 12:11
Take a Diagnostic Exam 31
KEY IDEA
You can check your answer by
evaluating
∫− 2
− 1
(2x−3)dxand
∫ 5
− 1
(2x−3)dx.
- h(x)=
∫π
π/ 2
√
sintdt⇒h′(x)=
√
sinx
h′(π)=
√
sinπ=
√
0 = 0
- Letu= 3 x;du= 3 dxor
du
3
=dx.
∫
g(3x)dx=
∫
g(u)
du
3
=
1
3
∫
g(u)du
=
1
3
f(u)+c=
1
3
f(3x)+c
∫ 2
0
g(3x)dx=
1
3
[f(3x)]^20
=
1
3
f(6)−
1
3
f(0)
Thus, the correct choice is (A).
36.
∫x
π
sin(2t)dt=
[
−cos(2t)
2
]x
π
=
−cos(2x)
2
−
(
−
cos(2π)
2
)
=−
1
2
cos(2x)+
1
2
37. I.
∫c
a
f(x)dx=
∫b
a
f(x)dx+
∫c
b
f(x)dx
The statement is true, since the upper and
lower limits of the integrals are in sequence,
i.e.,a→c=a→b→c.
II.
∫b
a
f(x)dx=
∫c
a
f(x)dx−
∫b
c
f(x)dx
=
∫c
a
f(x)dx+
∫c
b
f(x)dx
The statement is not always true.
III.
∫c
b
f(x)dx=
∫a
b
f(x)dx−
∫a
c
f(x)dx
=
∫a
b
f(x)dx+
∫c
a
f(x)dx
The statement is true.
Thus, only statements I and III are true.
- Sinceg(x)=
∫ x
π/ 2
2 sintdt, then
g′(x)=2 sinx.
Setg′(x)= 0 ⇒2 sinx= 0 ⇒x=πor 2π
g′′(x)=2 cosxandg′′(π)=2 cosπ=
−2 andg′′(2π)= 1.
Thusg has a local minimum atx= 2 π. You
can also approach the problem geometrically
by looking at the area under the curve. See the
figure below.
+
−
+
y = 2sint
3 π 2 π
2
5 π
2
π π
(^02)
− 2
2
y
t
Chapter 13
- Total distance=
∫ 4
0
v(t)dt+
∣∣
∣
∣
∫ 6
4
v(t)dt
∣∣
∣
∣
=
1
2
(4)(20)+
∣∣
∣∣^1
2
(2)(−10)
∣∣
∣∣
= 40 + 10 =50 feet