Applications of Derivatives 171- (See Figure 8.6-12.)
yyx (x,0)(0,y) (0.5,4)xl0Figure 8.6-12Step 1: Distance formula:
l^2 =x^2 +y^2 ;x> 0 .5 andy>4.
Step 2: The slope of the hypotenuse:
m=
y− 4
0 − 0. 5=
− 4
x− 0. 5
⇒(y−4)(x− 0 .5)= 2
⇒xy− 0. 5 y− 4 x+ 2 = 2
y(x− 0 .5)= 4 xy=
4 x
x− 0. 5.
Step 3: l^2 =x^2 +(
4 x
x− 0. 5) 2
;l=±√
x^2 +(
4 x
x− 0. 5) 2Sincel>0,l=√
x^2 +(
4 x
x− 0. 5) 2
.Step 4: Entery 1 =√
x^2 +(
4 x
x− 0. 5) 2and use the [Minimum] function
of the calculator and obtain
x= 2 .5.
Step 5: Apply the First Derivative Test.
Entery 2 =d(y1(x),x) and use
the [Zero] function and obtain
x= 2 .5.
Note that:3f ′ – 0 +f decr
rel. minincrSincefhas only one relative
extremum, it is the absolute
extremum.
Step 6: Thus, atx= 2 .5, the length of the
hypotenuse is the shortest. At
x= 2 .5,y=4(2.5)
2. 5 − 0. 5
=5. The
vertices of the triangle are
(0, 0), (2.5, 0), and (0, 5).8.7 Solutions to Cumulative Review Problems
- Rewrite:y=[sin(cos( 6 x− 1 ))]^2
Thus,
dy
dx
= 2 [sin(cos( 6 x− 1 ))]×[cos(cos( 6 x− 1 ))]
×[−sin(6x−1)](6)
=−12 sin(6x−1)
×[sin(cos( 6 x− 1 ))]
×[cos(cos( 6 x− 1 ))].- Asx→∞, the numerator
100
x
approaches 0 and the denominator
increases without bound (i.e.,∞).
Thus, the limx→∞
100 /x
− 4 +x+x^2