Integration 217Step 3. Rewrite:∫
√^1
9 −u^2du
2=
1
2
∫
√du
32 −u^2.
Step 4. Integrate:1
2
sin−^1(
u
3)
+C.Step 5. Replaceu:1
2
sin−^1(
2 x
3)
+C.Step 6. Differentiate and Check:1
2
1
√
1 −( 2 x/ 3 )^2·
2
3
=
1
3
1
√
1 − 4 x^2 / 9=
1
√
91
√
1 − 4 x^2 / 9=
1
√
9 ( 1 − 4 x^2 / 9 )=1
√
9 − 4 x^2.
Example 2
Evaluate∫
1
x^2 + 2 x+ 5
dx.Step 1. Rewrite:∫
1
(x^2 + 2 x+ 1 )+ 4=
∫
1
(x+ 1 )^2 + 22dx=
∫
1
22 +(x+ 1 )^2dx.Letu=x+1.
Step 2. Differentiate:du=dx.Step 3. Rewrite:∫
1
22 +u^2du.Step 4. Integrate:1
2
tan−^1(
u
2)
+C.Step 5. Replaceu:1
2
tan−^1(
x+ 1
2)
+C.Step 6. Differentiate and Check:(
1
2)
1 ( 1 / 2 )
1 +[(x+1)/ 2 ]^2=
(
1
4)
1
1 +(x+ 1 )^2 / 4=(
1
4)
4
4 +(x+ 1 )^2=
1
x^2 + 2 x+ 5.
TIP • If the problem gives you that the diameter of a sphere is 6 and you are using formulas
such asv=4
3
πr^3 ors= 4 πr^2 , do not forget thatr=3.