216 STEP 4. Review the Knowledge You Need to Score High
Example 2
Evaluate∫
3(
sec^2 x)√
tanxdx.Step 1. Letu=tanx.
Step 2. Differentiate:du=sec^2 xdx.Step 3. Rewrite: 3∫
(tanx)^1 /^2 sec^2 xdx= 3∫
u^1 /^2 du.Step 4. Integrate: 3
u^3 /^2
3 / 2
+C= 2 u^3 /^2 +C.Step 5. Replaceu: 2(tanx)^3 /^2 +Cor 2 tan^3 /^2 x+C.Step 6. Differentiate and Check:( 2 )(
3
2)(
tan^1 /^2 x)(
sec^2 x)
= 3(
sec^2 x)√
tanx.Example 3
Evaluate∫
2 x^2 cos(
x^3)
dx.Step 1. Letu=x^3.
Step 2. Differentiate:du= 3 x^2 dx⇒
du
3
=x^2 dx.Step 3. Rewrite: 2∫ [
cos(
x^3)]
x^2 dx= 2∫
cosu
du
3=
2
3
∫
cosudu.Step 4. Integrate:2
3
sinu+C.Step 5. Replaceu:2
3
sin(
x^3)
+C.Step 6. Differentiate and Check:2
3
[
cos(
x^3)]
3 x^2 = 2 x^2 cos(
x^3)
.TIP • Remember that the area of a semicircle is^1
2
πr^2. Do not forget the1
2
. If the cross
sections of a solid are semicircles, the integral for the volume of the solid will involve(
1
2
) 2
which is1
4
.
U-Substitution and Inverse Trigonometric Functions
Example 1
Evaluate∫
√dx
9 − 4 x^2.
Step 1. Letu= 2 x.Step 2. Differentiate:du= 2 dx;
du
2=dx.