222 STEP 4. Review the Knowledge You Need to Score High
Each letter in the acronym represents a type of function:Logarithmic,Inverse trigono-
metric,Polynomial,Exponential, andTrigonometric. As you consider integrating by parts,
assign the factor that falls earlier in theLIPETlist asu, and the other asdv.Example 1∫
xe−xdxStep 1: Identifyu=xand dv=e−xdxsincex is aPolynomial, which comes before
Exponential inLIPET.
Step 2: Differentiatedu=dxand integratev=−e−x.Step 3:∫
xe−xdx=−xe−x−∫
−e−xdx=−xe−x−e−x+CExample 2∫
xsin 4xdxStep 1: Identifyu=xanddv=sin 4xdxsincexis aPolynomial, which comes before
Trigonometric inLIPET.Step 2: Differentiatedu=dxand integratev=− 1
4
cos 4x.Step 3:∫
xsin 4xdx=
−x
4cos 4x+1
4
∫
cos 4xdx=
−x
4cos 4x+1
16
sin 4x+CIntegration by Partial Fractions
A rational function with a factorable denominator can be integrated by decomposing the
integrand into a sum of simpler fractions. Each linear factor of the denominator becomes
the denominator of one of the partial fractions.Example 1
∫
dx
x^2 + 3 x− 4Step 1: Factor the denominator:∫
dx
x^2 + 3 x− 4=
∫
dx
(x+4)(x−1)
Step 2: LetAandBrepresent the numerators of the partial fractions
1
(x+4)(x−1)=
A
x+ 4+
B
x− 1.
Step 3: The algorithm for adding fractions tells us thatA(x−1)+B(x+4)=1, soAx+Bx= 0
and−A+ 4 B=1. Solving gives usA=− 0 .2 andB= 0 .2.Step 4:∫
dx
x^2 + 3 x− 4=
∫
− 0. 2
x+ 4
dx+∫
0. 2
x− 1
dx=− 0 .2ln(x+4)+ 0 .2ln
(x−1)+C