5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1
Definite Integrals 247

Example 1


Evaluate


∫∞

1

1


x

dx.

∫∞


1

1


x
dx=limk→∞

∫k

1

1


x
dx=limk→∞[lnx]k 1 =limk→∞(lnk)=∞so the integral diverges.

Example 2


Evaluate


∫∞

−∞

xe−x^2 dx.

Since both limits of integration are infinite, consider the sum of the improper inte-


grals


∫∞

−∞

xe−x
2
dx=

∫ 0

−∞

xe−x
2
dx+

∫∞

0

xe−x
2
dx. This sum is the sum of the limits

limk→−∞


∫ 0

k

xe−x^2 dx+limc→∞

∫c

0

xe−x^2 dx=klim→−∞

[

1


2


e−x^2

] 0

k

+limc→∞

[

1


2


e−x^2

]c

0

=


limk→−∞


[

1


2


+


1


2


e−k
2

]
+limc→∞

[

1


2


e−c
2
+

1


2


]
=−

1


2


+


1


2


= 0 .Since the limit exists, the integral

converges and


∫∞

−∞

xe−x^2 dx=0.

Infinite Discontinuities


If the function has an infinite discontinuity at one of the limits of integration, then
∫b


a

f(x)dx=liml→b−

∫l

a

f(x)dxor

∫b

a

f(x)dx=liml→a+

∫b

l

f(x)dx. If an infinite discontinu-

ity occurs atx=cwithin the interval of integration (a,b), then the integral can be broken
into sections at the discontinuity and the sum of the two improper integrals can be found.
∫b


a

f(x)dx=

∫c

a

f(x)dx+

∫b

c

f(x)dx=limk→c−

∫k

a

f(x)dx+liml→c+

∫b

l

f(x)dx

Example


Evaluate


∫π/ 2

0

√cosx
1 −sinx

dx.

Sincef(x)=
√cosx
1 −sinx


has an infinite discontinuity atx=
π
2
, the integral is improper.

Evaluate


∫π/ 2

0

cosx

1 −sinx

dx = klim→π/ 2 −

∫k

0

cosx

1 −sinx

dx = klim→π/ 2 −

[
− 2


1 −sinx

]k
0

=


klim→π/ 2 −


[
− 2


1 −sink+ 2

]
= 2 .Since the limit exists,

∫π/ 2

0

cosx

1 −sinx

dx=2.
Free download pdf