248 STEP 4. Review the Knowledge You Need to Score High
11.5 Rapid Review
- Evaluate
∫xπ/ 2costdt.Answer: sint]xx/ 2 =sinx−sin(
π
2)
=sinx−1.- Evaluate
∫ 101
x+ 1dx.Answer: ln(x+1)]^10 =ln 2−ln 1=ln 2.- IfG(x)=
∫x0(2t+1)^3 /^2 dt, findG′(4).Answer: G′(x)=(2x+1)^3 /^2 andG′(4)= 93 /^2 =27.- If
∫k12 xdx=8, findk.Answer: x^2]k
1 =^8 ⇒k(^2) − 1 = 8 ⇒k=±3.
- IfG(x) is an antiderivative of (ex+1) andG(0)=0, findG(1).
Answer: G(x)=ex+x+C
G(0)=e^0 + 0 +C= 0 ⇒C=−1.
G(1)=e^1 + 1 − 1 =e. - IfG′(x)=g(x), express
∫ 20g(4x)dxin terms ofG(x).Answer: Letu= 4 x;
du
4
=dx.
∫
g(u)
du
4=
1
4
G(u).Thus,∫ 20g( 4 x)dx=1
4
G( 4 x)] 20=
1
4
[G(8)−G(0)].
7.
∫∞1dx
x^2Answer:∫∞1dx
x^2
=limn→∞∫n1dx
x^2
=limn→∞[
− 1
x]n1=limn→∞[
− 1
n+ 1
]
=1.8.
∫ 10dx
√
xAnswer:∫ 10√dx
x
=limk→ 0 +∫ 1k√dx
x
=limk→ 0 +[
2√
x] 1
k=klim→ 0 +[
2 − 2√
k]
=2.