Definite Integrals 24911.6 Practice Problems
Part A The use of a calculator is not
allowed.Evaluate the following definite integrals.1.
∫ 0− 1(1+x−x^3 )dx2.
∫ 116(x− 2 )^1 /^2 dx3.
∫ 31t
t+ 1
dt4.
∫ 60∣∣
x− 3∣∣
dx- If
∫k0(6x−1)dx=4, findk.6.
∫π0sinx
√
1 +cosxdx- Iff′(x)=g(x) andgis a continuous
function for all real values of∫ x, express
2
1
g(4x)dxin terms off.8.
∫ln 3ln 210 exdx9.
∫e 2e1
t+ 3
dt- Iff(x)=
∫x−π/ 4tan^2 (t)dt, findf′(
π
6)
.11.
∫ 1− 14 xex^2 dx12.
∫π−π(
cosx−x^2)
dxPart B Calculators are allowed.- Findkif
∫ 20(
x^3 +k)
dx=10.- Evaluate
∫ 3. 1− 1. 22 θcosθdθto the nearest
100th.- Ify=
∫x 31√
t^2 + 1 dt, find
dy
dx.
- Use a midpoint Riemann sum with four
subdivisions of equal length to find the
approximate value of∫ 80(
x^3 + 1)
dx.- Given
∫ 2− 2g(x)dx= 8and∫ 20g(x)dx=3, find(a)∫ 0− 2g(x)dx(b)∫− 22g(x)dx(c)∫− 205 g(x)dx(d)∫ 2− 22 g(x)dx- Evaluate
∫ 1 / 20√dx
1 −x^2.
- Find
dy
dx
ify=
∫sinxcosx(2t+1)dt.- Let fbe a continuous function defined on
[0, 30] with selected values as shown below:
x 0 5 10 15 20 25 30
f(x) 1.4 2.6 3.4 4.1 4.7 5.2 5.7