Areas, Volumes, and Arc Lengths 269Step 3. Evaluate the integrals.
∣∣
∣∣∫ 10(x−1)^3 dx∣∣
∣∣=∣∣
∣
∣∣(x−1)^4
4] 10∣∣
∣
∣∣=∣∣
∣∣−^1
4∣∣
∣∣=^1
4∫ 21(x−1)^3 dx=
(x−1)^4
4] 21=
1
4
Thus, the total area is1
4
+
1
4
=
1
2
.
Another solution is to find the area using a calculator.Enter∫ (
abs(
(x− 1 )∧ 3)
,x,0,2)
and obtain1
2
.
Example 2
Find the area of the region bounded by the graph of f(x)=x^2 −1, the linesx=−2 and
x=2, and thex-axis.
Step 1. Sketch the graph of f(x). See Figure 12.3-4.
(+) (+)–2 –1 (^02) (–) 1
y
x
f(x)
Figure 12.3-4
Step 2. Set up integrals.
Area=
∫− 1
− 2
f(x)dx+
∣∣
∣∣
∫ 1
− 1
f(x)dx
∣∣
∣∣+
∫ 2
1
f(x)dx.