5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1

290 STEP 4. Review the Knowledge You Need to Score High


Example 3
Find the area of the surface generated by revolving about thex-axis the arc defined byx= 3 − 2 t
andy=


20 −t^2 when 0≤t≤4.

Step 1. Differentiate
dx
dt
=−2 and
dy
dt

=


−t

20 −t^2

.


Step 2. S=

∫ 4

0

2 π


20 −t^2

√√
√√
(− 2 )^2 +

(
−t

20 −t^2

) 2
dt

= 2 π

∫ 4

0


20 −t^2


4 +
t^2
20 −t^2
dt

= 2 π

∫ 4

0


20 −t^2


80 − 3 t^2
20 −t^2
dt

= 2 π

∫ 4

0


80 − 3 t^2 dt≈ 2 π( 31. 7768 )≈ 199. 6595

Area and Arc Length for Polar Curves
Area for Polar Curves
Ifr=f(θ) is a continuous polar curve on the intervalα≤θ≤βandα<β<α+ 2 π, then
the area enclosed by the polar curve isA=

1


2


∫β

α

[f(θ)]^2 dθ=

1


2


∫β

α

r^2 dθ.

Example 1
Find the area enclosed byr= 2 +2 cosθon the interval fromθ=0toθ=π.

Step 1. Squarer^2 = 4 +8 cosθ+4 cos^2 θ.

Step 2. A=

1


2


∫π

0

(
4 +8 cosθ+4 cos^2 θ

)
dθ= 2

∫π

0

(
1 +2 cosθ+2 cos^2 θ

)

= 2


[
2 θ+4 sinθ+ 2

(
θ
2

+


1


4


sin 2θ

)]π

0

= 6 θ+8 sinθ+sin 2θ

∣∣π
0 =^6 π

Arc Length for Polar Curves
For a polar graph defined on a interval (α,β), if the graph does not retrace itself in that
interval and if
dr

is continuous, then the length of the arc fromθ=αtoθ=βisL=
∫β

α


r^2 +

(
dr

) 2
dθ.
Free download pdf