292 STEP 4. Review the Knowledge You Need to Score High
Example 2
Find the length of the curver(t)=〈
2 sint,5t〉
fromt=0tot=π.Step 1. r′(t)=〈
2 cost,5〉Step 2.∥∥
r′(t)∥∥
=√
4 cos^2 t+ 25Step 3. With the aid of a graphing calculator, the arc lengths=∫π0√
4 cos^2 t+ 25 dtcan
be found to be approximately equal to 16.319 units.12.6 Rapid Review
- Iff(x)=
∫x0g(t)dtand the graph ofgis shown in Figure 12.6-1. Find f(3).yg(t)0 321 t
–11Figure 12.6-1Answer: f( 3 )=∫ 30g(t)dt=∫ 10g(t)dt+∫ 31g(t)dt= 0. 5 − 1. 5 =− 1- The functionfis continous on [1, 5] and f >0 and selected values of fare given
below.
x 1 2 3 4 5
f(x) 2 4 6 8 10Using 2 midpoint rectangles, approximate the area under the curve offforx=1to
x=5.
Answer:Midpoints arex=2 andx=4 and the width of each rectangle
=5 − 1
2
=2.
Area≈ Area of Rect 1 + Area of Rect 2 ≈4(2)+8(2)≈24.- Set up an integral to find the area of the regions bounded by the graphs ofy=x^3 and
y=x. Do not evaluate the integral.