300 STEP 4. Review the Knowledge You Need to Score High
∫
sin(
x
2)
dx=∫
sinu(2du)= 2∫
sinudu=−2 cosu+c=−2 cos(
x
2)
+cA=∫ππ/ 2sin(
x
2)
dx=[
−2 cos(
x
2)]ππ/ 2=− 2[
cos(
π
2)
−cos(
π/ 2
2)]=− 2
(
cos(
π
2)
−cos(
π
4))=− 2
(
0 −√
2
2)
=√
2- (See Figure 12.9-8.)
Using the Disc Method:
V=π∫ 30(
x^2 + 4) 2
dx=π∫ 30(
x^4 + 8 x^2 + 16)
dx=π[
x^5
5+
8 x^3
3
+ 16 x] 30=π[
35
5+
8(3)^3
3
+16(3)
]
− 0 =843
5
π0 34y y = x(^2) + 4
Not to Scale
x
Figure 12.9-8
Area
∫k11
x
dx=lnx]k 1 =lnk−ln 1=lnk.
Set lnk=1. Thuselnk=e^1 ork=e.- (See Figure 12.9-9.)
10–1y = 1y = –1xx = y^2 + 1yFigure 12.9-9Using the Disc Method:V=π∫ 1− 1(
y^2 + 1) 2
dy=π∫ 1− 1(
y^4 + 2 y^2 + 1)
dy=π[
y^5
5+
2 y^3
3
+y] 1− 1=π[(
15
5+
2(1)^3
3
+ 1
)−
(
(−1)^5
5+
2(−1)^3
3
+(−1)
)]=π(
28
15+
28
15
)
=
56 π
15Note: You can use the symmetry of the
region and find the volume by
2 π∫ 10(
y^2 + 1) 2
dy.