306 STEP 4. Review the Knowledge You Need to Score High
Step 1. Distance Formula:L=
√
(x− 4 )^2 +(y− 1 )^2=
√
(x− 4 )^2 +(
x^2
2− 1
) 2where the domain is all real
numbers.
Step 2. Enter√ y 1 =
((x−4)∧ 2 +(. 5 x∧ 2 −1)∧2).
Entery 2 =d(y1(x),x).
Step 3. Use the [Zero] function and
obtainx=2 fory 2.
Step 4. Use the First Derivative Test. (See
Figures 12.10-4 and 12.10-5.)
Atx=2,Lhas a relative
minimum. Since atx=2,Lhas
the only relative extremum, it is
an absolute minimum.[−3,3] by [−15,15]
Figure 12.10-4–0+decr.^2 incr.rel. min.y 2 =(
dL (
dxLFigure 12.10-5Step 5. Atx=2,y=1
2
(
x^2)
=
1
2(
22)
= 2 .Thus, the point ony=1
2
(
x^2)
closest to the point(4, 1) is the point (2, 2).- (a) s(0)=0 and
s(t)=∫
v(t)dt=∫
tcos(t^2 +1)dt.Enter∫
(x∗cos(x∧ 2 +1), x)and obtain
sin(x^2 +1)
2.
Thus, s(t)=
sin(t^2 +1)
2+C.
Sinces(0)= 0 ⇒
sin(0^2 +1)
2+C= 0
⇒
. 841471
2
+C= 0
⇒C=− 0. 420735 =− 0. 421
s(t)=
sin(t^2 +1)
2− 0. 420735
s(2)=
sin(2^2 +1)
2− 0. 420735
=− 0. 900197 ≈− 0. 900.
(b) v(2)=2 cos(2^2 +1)=2 cos(5)=
0. 567324
Sincev(2)>0, the particle is moving
to the right att=2.