More Applications of Definite Integrals 323Step 6. Separate variables:dy=(x^2 +x−1)dx.
Step 7. Integrate both sides:
∫
dy=∫
(x^2 +x−1)dxy=
x^3
3+
x^2
2
−x+C 2.Step 8. Substitute given condition: Atx=0,y=3; 3= 0 + 0 − 0 +C 2 ⇒C 2 =3.
Therefore,y=
x^3
3+
x^2
2
−x+ 3.Step 9. Verify the result by differentiating:
y=
x^3
3+
x^2
2
−x+ 3dy
dx
=x^2 +x−1;
d^2 y
dx^2
= 2 x+ 1.Example 4
Find the general solution of the differential equation
dy
dx
=
2 xy
x^2 + 1.
Step 1. Separate variables:
dy
y=
2 x
x^2 + 1dx.Step 2. Integrate both sides:
∫
dy
y=
∫
2 x
x^2 + 1
dx(letu=x^2 +1;du= 2 xdx)ln|y|=ln(x^2 +1)+C 1.Step 3. General Solution: solve fory.
eln|y|=eln(x^2 +1)+C^1|y|=eln(x^2 +1)·eC^1 ;|y|=eC^1 (x^2 +1)
y=±eC^1 (x^2 +1)
The general solution isy=C(x^2 +1).Step 4. Verify the result by differentiating:
y=C(x^2 +1)
dy
dx
= 2 Cx= 2 x
C(x^2 +1)
x^2 + 1=
2 xy
x^2 + 1