322 STEP 4. Review the Knowledge You Need to Score High
Example 2
Find a solution of the differentiation equation
dy
dx
=xsin(x^2 );y(0)=−1.Step 1. Separate variables:dy=xsin(x^2 )dx.Step 2. Integrate both sides:∫
dy=∫
xsin(x^2 )dx;∫
dy=y.Letu=x^2 ;du= 2 xdxor
du
2
=xdx.
∫
xsin(x^2 )dx=∫
sinu(
du
2)
=1
2
∫
sinudu=−1
2
cosu+C=−
1
2
cos(x^2 )+CThus,y=−1
2
cos(x^2 )+C.Step 3. Substitute given condition:y(0)=−1;− 1 =−1
2
cos(0)+C;− 1 =− 1
2
+C;−
1
2
=C.
Thus,y=−1
2
cos(x^2 )−1
2
.
Step 4. Verify the result by differentiating:dy
dx=
1
2
[
sin(x^2 )]
(2x)=xsin(x^2 ).Example 3If
d^2 y
dx^2
= 2 x+1 and atx=0,y′=−1, andy=3, find a solution of the differential equation.Step 1. Rewrite
d^2 y
dx^2as
dy′
dx;
dy′
dx= 2 x+1.
Step 2. Separate variables:dy′=(2x+1)dx.Step 3. Integrate both sides:∫
dy′=∫
(2x+1)dx;y′=x^2 +x+C 1.Step 4. Substitute given condition: Atx=0,y′=−1;− 1 = 0 + 0 +C 1 ⇒C 1 =−1. Thus,
y′=x^2 +x−1.Step 5. Rewrite:y′=
dy
dx;
dy
dx
=x^2 +x−1.