5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1
Series 361

Step 2: Differentiate:


− 1


(x+1)^2
=− 1 + 2 x− 3 x^2 + 4 x^3 −···=

∑∞

n= 0

(−1)n+^1 (n+1)xn.

Step 3: Multiply by−1.
1
(x+1)^2
= 1 − 2 x+ 3 x^2 − 4 x^3 +···=


∑∞

n= 0

(−1)n(n+1)xn

Example 3


Use a MacLaurin series to approximate the integral


∫ 1

0

sin(x^2 )dxto three decimal place
accuracy.


Step 1: Substitutex^2 forxin the MacLaurin series representing sinx.


sin(x^2 )=(x^2 )−
(x^2 )^3
3!

+


(x^2 )^5
5!


(x^2 )^7
7!
···=x^2 −
x^6
3!

+


x^10
5!


x^14
7!

+···


Step 2:


∫ 1

0

sin(x^2 )dx=

∫ 1

0

(
x^2 −
x^6
3!

+


x^10
5!


x^14
7!

...


)
dx=
x^3
3


x^7
7 ·3!

+


x^11
11 ·5!


x^15
15 ·7!

+···



∣∣

1

0

=


1


3



1


7 ·3!


+


1


11 ·5!



1


15 ·7!


+···=


∑∞

n= 0

1


(4n+3)(2n+1)!

Step 3: For this alternating series, the absolute error for thenth partial sum is less than the


n+1 term so|S−sn|<

1


(4n+4)(2n+2)!

. We want three decimal place accuracy,


so we need|S−sn|<

1


(4n+4)(2n+2)!
≤ 0 .0005 or 2000≤(4n+4)(2n+2)!
This occurs forn≥2.

Step 4: Taking the suma 0 +a 1 +a 2 =


1


3



1


7 .3!


+


1


11 ·5!


= 0 .3103,


∫ 1

0

sin(x^2 )dx≈ 0 .3103.

Error Bounds


The remainder,Rn(x), for a Taylor series is the difference between the actual value of the
functionf(x) and thenth partial sum that approximates the function. If the function f(x)
can be differentiatedn+1 times on an interval containingx 0 , and if|f(n+1)(x)|≤Mfor all


xin that interval, then|Rn(x)|≤


M


(n+1)!
|x−x 0 |n+^1 for allxin the interval.

Example 1


Approximate



eaccurate to three decimal places.

Step 1: Substitute


1


2


forxin the MacLaurin series representation forex.

e^1 /^2 =

∑∞

n= 0

(1/2)n
n!

= 1 +


1


2


+


(1/2)^2


2


+


(1/2)^3


6


+···


= 1 +


1


2


+


1


8


+


1


48


+···=


∑∞

n= 0

1


2 n·n!
Free download pdf