Series 363- Determine whether the series
∑∞n= 1n
n^2 + 1
converges or diverges.Answer:nlim→∞n
n^2 + 1
1
n=nlim→∞
n^2
n^2 + 1
=1 and∑∞n= 11
n
diverges, so∑∞n= 1n
n^2 + 1
diverges bylimit comparison with∑∞n= 11
n.
- Determine whether the series
∑∞n= 150
n(n+1)
converges or diverges.Answer:Since∫∞150
x(x+1)
dx=50 limk→∞∫k1(
1
x+
− 1
x+ 1)
dx=50 limk→∞[lnx −ln(x+1)]k 1 =50 limk→∞[lnk−ln(k+1)+ln 2]=50 limk→∞[
ln
k
k+ 1
+ln 2]
=50 ln 2,∑∞n= 150
n(n+1)
converges by integral test.- Determine whether the series
∑∞
n= 1(− 1 )n3
2 n
converges absolutely, converges
conditionally, or diverges.
Examine the absolute values of∑∞
n= 1∣∣
∣∣(− 1 )n^3
2 n∣∣
∣∣=
∑∞
n= 13
2 n=
3
2
∑∞n= 11
n. Since
∑∞
n= 11
n
is aharmonic series that diverges, the series∑∞
n= 1∣∣
∣
∣(−^1 )n^3
2 n∣∣
∣
∣diverges and∑∞
n= 1(− 1 )n3
2 n
doesnot converge absolutely. Now examine the alternating series∑∞
n= 1(− 1 )n3
2 n. Rewrite
∑∞
n= 1(− 1 )n(
3
2 n)
as3
2
∑∞n= 1(−1)n
n. Since
∑∞
n= 1(−1)n
n
is an alternating harmonic series thatconverges, therefore3
2
∑∞n= 1(−1)n
n
converges, and the series∑∞
n= 1(−1)n3
2 n
convergesconditionally.- Find the interval to convergence for the series
∑∞n= 1(x+1)n
√
n.
Answer:nlim→∞∣∣
∣∣
∣(x+1)n+^1
√
n+ 1·
√
n
(x+1)n∣∣
∣∣
∣
=nlim→∞∣∣
∣∣
∣√
n(x+1)
√
n+ 1∣∣
∣∣
∣
=|x+ 1 |. Since|x+ 1 |< 1when− 1 <x+ 1 <1or− 2 ≤x<0, the series converges on (−2, 0). When
x=−2, the series becomes∑∞n= 1(−1)n
√
n. Since 1>
1
√
2>
1
√
3>
1
2
>···andnlim→∞1
√
n
=0, this alternating series converges. Whenx=0, the series becomes