Cracking The Ap Calculus ab Exam 2018

(Marvins-Underground-K-12) #1

and ∫cos x dx = sin x + C.


First,   we  need    to  rewrite     the     integrand,  using   trig    identities:     dx  =  

dx = ∫(cos x + 4 sec^2 x) dx. Now, we can evaluate the integral: ∫(cos x +


4   sec^2 x)    dx  =   sin x   +   4   tan x   +   C.


  1. −2 cos x + C


Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sin x dx = − cos x + C.


First,  we  need    to  rewrite the integrand,  using   trig    identities:     =       =   

. Now, we can evaluate the integral: ∫2 sin x dx = −2 cos x + C.



  1. x + sin x + C


Here we will use the Rules for the Integrals of Trig Functions, namely: ∫cos x dx = sin x + C.


First, we need to rewrite the integrand, using trig identities: ∫(1 + cos^2 x sec x) dx =


dx = ∫(1 + cos x) dx. Now, we can evaluate the integral: ∫(1 + cos x) dx = x +


sin x   +   C.


  1. − cos x + C


Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sin x dx = − cos x + C.


First, we need to rewrite the integrand, using trig identities: dx = ∫ sin x dx. Now we


can evaluate the integral: ∫sin x dx = − cos x + C.




  1. −2  tan x   +   C



Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sec^2 x dx = tan x + C.


First, we need to rewrite the integrand, using trig identities: ∫ dx = ∫(x − 2 sec^2

Free download pdf