Cracking The Ap Calculus ab Exam 2018

(Marvins-Underground-K-12) #1
Here    we  will    use the Power   Rule,   which   says    that     .  First,  let’s   simplify    the

integrand:      =       =    .  Now,    we

can evaluate the integral: ∫(x^4 − 2x^2 + x−2) dx = = .


8.

Here    we  will    use the Power   Rule,   which   says    that    .

First, let’s simplify the integrand: ∫x(x − 1)^3 dx = ∫x(x^3 − 3x^2 + 3x − 1) dx = ∫(x^4 − 3x^3 + 3x^2 −


x)  dx.

Now, we can evaluate the integral: ∫(x^4 − 3x^3 + 3x^2 − x) dx = =


.


  1. tan x + sec x + C


Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sec^2 x dx = tan x + C


and ∫(sec x tan x) dx = sec x + C. First, let’s expand the integrand: ∫sec x (sec x + tan x) dx = ∫


(sec^2 x + sec x tan x) dx. We get ∫(sec^2 x + sec x tan x) dx = tan x + sec x + C.



  1. tan x + + C


Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sec^2 x dx = tan x + C


and the Power Rule, which says that . We get ∫(sec^2 x + x) dx =


.


  1. sin x + 4 tan x + C


Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sec^2 x dx = tan x + C

Free download pdf