Here we will use the Power Rule, which says that ∫ xn dx = + C. First, let’s simplify the
integrand: ∫ dx = ∫ dx = ∫ (x^3 + 7 x−2) dx. Now, we can evaluate the
integral: ∫(x^3 + 7x−2) dx = + C.
- − 2x + C
Here we will use the Power Rule, which says that ∫ xn dx = + C. First, let’s simplify the
integrand: ∫(1 + x^2 )(x − 2) dx = ∫(x^3 − 2x^2 + x − 2) dx. Now, we can evaluate the integral: ∫(x^3
− 2x^2 + x − 2) dx = − 2x + C.
- sin x + 5 cos x + C
Here we will use the Rules for the Integrals of Trig Functions, namely:
(^) ∫sin x dx = − cos x + C and ∫cos x dx = sin x + C. We get ∫(cos x − 5 sin x) dx = sin x + 5 cos
x + C.
- sec x + C
Here we will use the Rules for the Integrals of Trig Functions, namely, ∫(sec x tan x) dx = sec x
+ C. First, we need to rewrite the integrand, using trig identities: ∫ dx = ∫
dx = ∫(sec x tan x) dx. Now, we can evaluate the integral: ∫(sec x tan x) dx =
sec x + C.
- tan x − x + C