CK-12-Pre-Calculus Concepts
3.2. Properties of Exponents http://www.ck12.org (a−^2 b^3 )−^3 ab^2 c^0 Solution: (a−^2 b^3 )−^3 ab^2 c^0 = a^6 b−^9 ab^2 · 1 = ...
http://www.ck12.org Chapter 3. Logs and Exponents Vocabulary Exponentsare repeated multiplication. Powerrefers to the number in ...
3.2. Properties of Exponents http://www.ck12.org 4.(− 125 )^13 5.( 4 x^3 y)( 3 x^5 y^2 )^4 6.( 5 x^3 y^2 )^2 ( 7 x^3 y)^2 7.^8 a ...
http://www.ck12.org Chapter 3. Logs and Exponents 3.3 Scientific Notation Here you will review how to write very large and very ...
3.3. Scientific Notation http://www.ck12.org An electron’s mass is about 0.000 000 000 000 000 000 000 000 000 000 910 938 22 kg ...
http://www.ck12.org Chapter 3. Logs and Exponents First convert each number to scientific notation individually, then process t ...
3.4. Properties of Logs http://www.ck12.org 3.4 Properties of Logs Here you will be introduced to logarithmic expressions and wi ...
http://www.ck12.org Chapter 3. Logs and Exponents (bw)n=bw·n There are a few standard results that should be memorized and shoul ...
3.4. Properties of Logs http://www.ck12.org Example C Simplify the following expression: 2 log 12144 −^4. Solution:2 log 12144 − ...
http://www.ck12.org Chapter 3. Logs and Exponents False. It is true that the log of a product is the sum of logs. It is not true ...
3.5. Change of Base http://www.ck12.org 3.5 Change of Base Here you will extend your knowledge of log properties to a simple way ...
http://www.ck12.org Chapter 3. Logs and Exponents logab=log^1 ba Solution: logab=loglogxxba= loglog^1 xa xb =log^1 ba Example C ...
3.5. Change of Base http://www.ck12.org log 2527 =log 3log 5^32 =^32 ·(log 5log 3^1 )=^32 ·log^135 ≈^32 · 1. 4651 = 1. 0239 Pr ...
http://www.ck12.org Chapter 3. Logs and Exponents 3.6 Exponential Equations Here you will apply the new algebraic techniques ass ...
3.6. Exponential Equations http://www.ck12.org 30 =(^1.^06 ) t− 1 0. 06 1. 8 = ( 1. 06 )t− 1 2. 8 = 1. 06 t ln 2. 8 =ln( 1. 06 t ...
http://www.ck12.org Chapter 3. Logs and Exponents log 1. 798982 x=log 1. 798986 2 x·log 1. 79898 = 6 ·log 1. 79898 2 x= 6 x= 3 V ...
3.6. Exponential Equations http://www.ck12.org log (i 12 ) =− 0. 0145 ·d log (i 12 ) =− 0. 0145 · 10 log (i 12 ) =− 0. 145 (i 12 ...
http://www.ck12.org Chapter 3. Logs and Exponents 2x+^4 = 5 x 13· 80.^2 x= 546 11.bx=c+a 32x= 0. 94 −. 12 Solve each log equati ...
3.7. Logistic Functions http://www.ck12.org 3.7 Logistic Functions Here you will explore the graph and equation of the logistic ...
http://www.ck12.org Chapter 3. Logs and Exponents down). This change in curvature will be studied more in calculus, but for now ...
«
4
5
6
7
8
9
10
11
12
13
»
Free download pdf