Ch ap t er Rev i ew
Co n n ect i n g 8 I G i d e a s an d A n sw e r i n g t he Essen t i al Q u e st i o n s
l Eq u ivalen ce
Rat i o n al ex p r essi o n s can
be represent ed many ways.
When a rat ional expression
is simplified, the numerator
and d enom i nat or have no
common f act or s excep t 1.
Si m p l i f y i n g Ra t i o n a l Ex p r e ssi o n s
(Lesson 11-1)
7y + 21 7(k+ 3)1
y + 3 ~ ,y-K3
= 7
Multiplying, Dividing, Adding,
and Sub t ract i ng Rat i o nal
Ex p r e s s i o n s ( Le s so n s 1 1 - 2 , 1 1 - 3 ,
and 11- 4)
7 5 _ 7 — 5
3x 3x 3x
= 2_
3x
"V
2 Fu n ct i o n s
Rat i o n al f u n ct i o n s h av e
equat ions of t he f orm
« = S=i-The graph
of a rat ional f unct ion may
have vertical and horizontal
asympt ot es.
3 So l v i n g Eq u a t i o n s
an d Inequalities
To isolate the variable in a
rational equation, multiply by
the LCD and then solve the
resulting equation. Check for
ext r aneous sol ut i ons.
Gr ap h i n g Rat i o n al Fu n ct i o n s
(Lesson 11-7)
Inverse Variation (Lesson 11-6)
y
S
_ i
\ I X
—^0! \
_ .-..I..
Solving Rational Equations
(Lesson 11-5)
1 + 1 = 5
2 t 8
8t | i (H)-
4t + 24 = 5t
24 = t
8t|l|
Ch ap t er V o c a b u l a r y
asymptote (p. 706)
constant o f variation fo r an
inverse v a ria tio n (p. 698)
1 e x c l u d e d v a l u e ( p. 6 6 4 )
1 i n v e r s e v a r i a t i o n ( p. 6 9 8 )
rational equation (p. 691)
rational expression (p. 664)
rational fu n ctio n (p. 705)
Choose the correct term to complete each sentence.
- A value of x for which a rational function f(x) is undefined is a(n) ?.
- A line that the graph of a function gets closer to as x or y gets larger in absolute
value is a(n) J_. - A(n) ? is a ratio of two polynomial expressions.
c
Po w erAlg eb ra.com Ch ap t er 11 Ch ap t er Rev i ew 715