English SpanishPerfect squares (p. 17)
are integers.
Numbers whose square roots Cuadrado perfecto (p. 17)
un numero entero.Numero cuya raiz cuadrada esExample The numbers 1, 4, 9, 16, 25, 3 6 ,..
are perfect squares because they
are the squares of integers.Perfect square trinom ial (p. 523) Any trinomial of the
form a 2 + 2 ab + b2 or a 2 - lab + b2.
Trinomio cuadrado perfecto (p. 523) Todo trinomio de la
forma a 2 + lab + b2 o a 2 - lab + b2.
Example (x+3)2 =x 2 + 6 x + 9Permutation (p. 763) An arrangement of some or all of a
set of objects in a specific order. You can use the notation nPr
to express the number of permutations, where n equals the
number of objects available and r equals the number of
selections to make.Permutacion (p. 763) Disposicion de algunos o de todos
los objetos de un conjunto en un orden determinado. El
numero de permutaciones se puede expresar con la
notacion nPr, donde n es igual al numero total de objetos y r
es igual al numero de selecciones que han de hacerse.
Example How many ways can you arrange
5 objects 3 at a time?
n 5! 5! 5* 4* 3* 2* 1
5P3 ~ :(5 - 3 )! 2! 2 • 1 = 60
There are 60 ways to arrange
5 objects 3 at a time.Perpendicular lines (p. 331) Lines that intersect to form
right angles. Two lines are perpendicular if the product of
their slopes is - 1.
ExampleRectas perpendiculares (p. 331) Rectas que forman
Angulos rectos en su interseccibn. Dos rectas son
perpendiculares si el producto de sus pendientes es - 1.V\y ri'
XPiecewise function (p. 348) A piecewise function has
different rules for different parts of its domain.Point-slope form (p. 315) A linear equation of a
nonvertical line written as y~y-\ = m {x -x-j). The line
passes through the point (x1f y^) with slope m.Funcion de fragm entos (p. 348) Una funcion de
fragmentos tiene reglas diferentes para diferentes partes de
su dominio.Forma punto-pendiente (p. 315) La ecuacion lineal de
una recta no vertical que pasa por el punto (x1; y{) con
pendiente m esta dada por y-y-\ = m (x-x)).
Example An equation with a slope of —j
passing through ( 2 , - 1 ) would be
written y +^1 = - j(x-
point-slope form.- 2 ) in