298 CHAPTER 5 Exponents, Polynomials, and Polynomial Functions
(d)
Square twice.
Distributive property
Distributive property
again
Combine like terms.
NOW TRY
OBJECTIVE 6 Multiply polynomial functions. In Section 5.3,we added and
subtracted functions. Functions can also be multiplied.
= 16 a^4 + 32 a^3 b+ 24 a^2 b^2 + 8 ab^3 +b^4
+ 4 a^2 b^2 + 4 ab^3 + b^4
= 16 a^4 + 16 a^3 b+ 4 a^2 b^2 + 16 a^3 b+ 16 a^2 b^2 + 4 ab^3
+b^214 a^2 + 4 ab+b^22
= 4 a^214 a^2 + 4 ab+ b^22 + 4 ab 14 a^2 + 4 ab+b^22
= 14 a^2 + 4 ab+ b^2214 a^2 + 4 ab+ b^222 a+b
= 12 a+b 22 12 a+b 22
12 a+b 24
CAUTION Write the product as not which indi-
cates the composition of functions ƒ and g. (See Section 5.3.)
ƒ 1 x 2 #g 1 x 2 1 ƒg 21 x 2 , ƒ 1 g 1 x 22 ,
Multiplying Functions
If and define functions, then
Product function
The domain of the product function is the intersection of the domains of
and g 1 x 2.
ƒ 1 x 2
1 ƒg 21 x 2 ƒ 1 x 2 #g 1 x 2.
ƒ 1 x 2 g 1 x 2
Multiplying Polynomial Functions
For and find and
Use the definition.
Substitute.
FOIL
Combine like terms.
Let in
Add and subtract.
Confirm that ƒ 1 - 12 #g 1 - 12 is equal to 1 ƒg 21 - 12. NOW TRY
= 1
=- 6 + 11 - 4
= 61 - 123 + 111 - 122 + 41 - 12 x=- 1 1 ƒg 21 x 2.
1 ƒg 21 - 12
= 6 x^3 + 11 x^2 + 4 x
= 6 x^3 + 3 x^2 + 8 x^2 + 4 x
= 13 x+ 4212 x^2 +x 2
=ƒ 1 x 2 #g 1 x 2
1 ƒg 21 x 2
ƒ 1 x 2 = 3 x+ 4 g 1 x 2 = 2 x^2 +x, 1 ƒg 21 x 2 1 ƒg 21 - 12.
EXAMPLE 8
Be careful
with signs.
NOW TRY
EXERCISE 7
Find each product.
(a)
(b) 1 y- 324
314 x-y 2 + 24314 x-y 2 - 24
NOW TRY
EXERCISE 8
For
and
find and. 1 ƒg 21 x 2 1 ƒg 21 - 22
g 1 x 2 = 8 x+7,
ƒ 1 x 2 = 3 x^2 - 1
NOW TRY ANSWERS
- (a)
(b) - 24 x^3 + 21 x^2 - 8 x-7; - 99
108 y+ 81
y^4 - 12 y^3 + 54 y^2 -
16 x^2 - 8 xy+y^2 - 4